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Palynological residues from surface sediments in the Banda Sea (Indonesia) are characterised by the 
presence of chitinous palynomorph types that can be correlated with exoskeletons of crustaceans, 
notably calanoid copepods. A series of 27 palynomorph types are described and informally categori­
sed. Also the quantitatively prominent transparent palynodebris and its diffuse degradation products 
are derived from crustaceans. Selective preservation of the chitinous remains is considered to be rela­
ted to the effects of high plankton production and high sedimentation rate. 
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In t roduc t ion 

Terrigenous and p lanktonic organic matter i n pa lyno log ica l residues is composed 
of a range of biomacromolecules of a different nature and a va r i ed resistance to 
degradat ion. N o t a b l y i n vascular plants, one m a y recognise b iomacromolecules that 
are par t icu la r ly resistant (l ignins, tannins, sporopol lenin , cutans, suberans; Tegelaar 
et al . , 1989; Tegelaar, 1990). This also applies to the algaeans, characteristic of var ious 
algal categories. Conversely, it is generally recognised that polysaccharides can be 
r ap id ly depo lymer i sed and hydro lysed through enzymatic processes (Stout et a l . , 
1988,1989; M o e r s , 1989; M o e r s et al . , 1989). Characteristic polysaccharide b iomacro­
molecules , such as cellulose, ch i t in and var ious hemicelluloses, are thus considered 
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to have a l o w preservat ion potential (Tegelaar et a l , 1989; Tegelaar, 1990). 
H o w e v e r , despite the relative labi l i ty of polysaccharide plant and an ima l tissues, 

paradoxica l ly their s tructural ly preserved remains occur throughout the Palaeozoic 
to Recent pa lynolog ica l record. Such records include well-preserved, r i ch and diverse 
associations of p resumed chi t inous pa lynomorphs of ar thropod, anne l id , protist 
and fungal o r i g i n (Traverse, 1988; v a n Waveren & Visscher, i n press). The chemica l 
background for their selective preservation d u r i n g diagenesis and thermal matura­
t ion is u n k n o w n . A t least part of the records suggest chemical t ransformation of ch i ­
t in into more resistant organic macromolecules. 

O n a g lobal basis, ch i t in is among the most prominent polysaccharides occur r ing 
i n nature. A n n u a l p roduc t ion of this nitrogenous polysaccharide has been estimated 
to correspond to 40. g organic carbon, approximately the same as cellulose (Pou-
licek, 1985). H i g h annua l p roduc t ion is notably due to ch i t in formation b y terrestrial 
and mar ine arthropods. Exoskeletons of arthropods are composed of a complex of 
ch i t in (15-27%) and prote in (12-73%), w i t h the rest of the exoskeleton consis t ing of 
inorganic and non-amino containing organic compounds (Aus t i n et al . , 1981). 

Mic roscop ic remains of ar thropod exoskeletons m a y be regular ly detected i n 
pa lyno log ica l assemblages of Neogene to (sub-)Recent age. Remains of insects are 
w e l l - k n o w n f rom terrestrial Quaternary deposits (e.g., v a n Gee l , 1978; Mateus , 1992). 
Occurrences of ar thropod remains i n marine sediments, o n the other hand , have not 
yet been comprehens ively documented. They are k n o w n , however, f rom deep m a ­
rine sedimentary settings i n the Pacific, At lan t ic and Indian Oceans, where un iden t i ­
fied appendages of crustaceans have been i l lustrated as part of Recent, Quaternary 
or Pl iocene p a l y n o m o r p h associations (e.g., Bou loua rd & Delauze , 1966; Ca ra t i n i et 
al . , 1975,1978; v a n der Kaars , 1987). 

A p a r t f rom pa lynomorphs identif ied as copepod egg-envelopes (van Waveren , 
1992,1994; v a n Waveren & Marcus , 1993; v a n Waveren & Visscher, i n press) of w h i c h 
the chemica l compos i t ion is s t i l l unclear, a morpholog ica l ly w i d e var ie ty of pre­
sumed chi t inous fragments of crustacean exoskeletons has been detected d u r i n g a 
palynofacies analysis of box-core samples taken i n the Banda Sea, Indonesia (van 
Waveren, 1989; v a n Waveren & Visscher, i n press). A s a contr ibut ion to the under­
s tanding of the fate of chit inous an ima l tissues i n deep sea sedimentary env i ron­
ments, the present paper is a first attempt to describe and classify the crustacean exo­
skeleton component among both pa lynomorphs and palynodebr is f rom (sub-)Recent 
mar ine sediments. 

M a t e r i a l a n d methods 

Mate r i a l 

Samples were collected from box-cores taken a long the Seram, Tanimbar and 
T imor transects of the Banda Sea, d u r i n g cruise G-5 of the Indonesian-Dutch Snel l i -
us-II expedi t ion i n 1984-1985 (van H i n t e et al . , 1986; S i tumorang, 1992; v a n Waveren 
& Visscher, i n press). The samples were taken f rom the top 7 c m of the sediments i n 
the box-cores. 
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Sample processing and analysis 

The samples were d r i ed and d ry weight was measured (for each sample c. 5 g of 
sediment). C a l c i u m carbonate was d isso lved w i t h hydrochlor ic ac id ( H C l 30%). S i l i ­
cates were d i sso lved w i t h hydrof luor ic acid ( H F 43%). The residue was s ieved over a 
10 urn mesh screen, moun ted o n a cover glass us ing a wet t ing agent (Cel lobond) , 
and d r i ed . Elvaci te was used as a permanent m o u n t i n g m e d i u m . A n a l y s i s of perma­
nent sl ides i nc luded the descr ipt ion and informal categorisation of morpho log ica l ly 
characteristic exoskeleton fragments. Identification was achieved b y compar i son 
w i t h the features of a copepod subjected to pa lynolog ica l sample preparat ion techni­
ques and b y compar i son w i t h literature i l lustrations (notably Sars, 1903-1918; Scott, 
1909). A m o n g the more c o m m o n l y occurr ing fragments, 27 p a l y n o m o r p h types and 
one pa lynodebr i s type were dis t inguished. The types were described and ident i f ied 
w i t h a v a r y i n g degree of precis ion (copepod remains, crustacean remains, a r thropod 
remains). 

Descr ip t ive te rminology 

The b o d y of an ar thropod consists of many segments (or somites), w h i c h m a y be 
alike or different and w h i c h constitute three p r imary b o d y d iv i s ions (head, thorax 
and abdomen). H e a d somites are a lways fused together; i n m a n y arthropods other 
add i t iona l somites m a y also be fused. Each somite of the s impler ar thropods has one 
or two pairs of jointed appendages. In more specialised arthropods most or a l l of the 
posterior appendages are lost. The appendages show a w i d e range of modi f ica t ion . 
They funct ion for locomot ion , respiration, grasping, mastication, ov ipos i t i on and as 
sensory organs. In typ ica l arthropods b o d y parts as w e l l as appendages are encased 
i n a jointed chi t inous exoskeleton. 

Since exoskeleton remains i n pa lyno log ica l residues from the Banda Sea sedi­
ments are most frequently der ived from crustacean zooplankton , their descr ip t ion 
was m a i n l y based o n the fo l lowing convent ional te rminology for copepods (Borra-
daile & Potts, 1961; Barnes, 1987; F i g . 1): 
- abdomen : part of the copepod b o d y caudal of the genital somite, i n c l u d i n g the 

genital somite; 
- antenna: first and second appendage o n the head of the copepod; 
- appendage: antennae, mandibles , maxi l lae , maxi l l ipeds , r ami , and s w i m m i n g feet 

of the copepod; 
- a r t icu la t ion : joint between the different segments of the copepod; 
- bas ipod i te : segment of the s w i m m i n g foot o n w h i c h bo th the endopodi te a n d the 

exopodi te are attached; 
- b i r amous : forked; 
- coxa: segment of the s w i m m i n g foot between the somite and the basipodite; 
- endopodi te : internal branch of the fork of a b i ramous appendage; 
- exopodi te : external b ranch of the fork of a b i ramous appendage; 
- gnathobasis : basal lobe of a mandible ; 
- imp lan t a t i on : joint o n the appendage where a hair or other process has been at­

tached; 
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- head: conica l to r o u n d cuticular exoskeleton segment, car ry ing the eye(s), the m a n ­
dib le , the max i l l a , and the antennae; 

- in te rcoxal plate: plate pos i t ioned between the two coxa of s w i m m i n g feet; 
- m a n d i b l e : th i rd appendage o n the head; 
- m a x i l l a : fourth appendage o n the head; 
- m a x i l l i p e d : first thoracic appendage; 
- p ro topodi te : the coxa and the basipodite of a s w i m m i n g foot; 
- ramus: s ingle b ranch of the last b i ramous somite of the abdomen; 
- ros t rum: dorso-frontal pro longat ion of the head; 
- somite: segment between two joints of the cy l indr i ca l cuticle enclosing the copepod 

body ; 
- sternite: vent ra l side of somite; 
- s w i m m i n g foot: second to s ixth appendage of the thorax; 
- te lson: abdomina l somite car ry ing the anus; 
- tergite: dorsa l side of the somite; 
- thorax: part of the copepod situated between the head and the (first abdominal ) 

somite ca r ry ing the genital opercu lum; 
- un i r amous : not forked. 

For the descr ip t ion of the s w i m m i n g feet of copepods the f o l l o w i n g defini t ions 
are used (see F i g . 2): 
- la teral s ide: denticulate or convex side; 
- m e d i a l s ide: concave a n d / o r not ornamented side; 
- p r o x i m a l a r t icu la t ion: largest of the articulations; 
- d i s t a l a r t icu la t ion : smallest art iculation; 
- implan ta t ions : smaller than the articulations, o n the med ia l and lateral edges of the 

appendage; 
- l eng th : defined here as para l le l to the med ia l side; 
- w i d t h : def ined here as the m a x i m u m w i d t h perpendicular to the length. 

Dent iculate mand ib le parts are described w i t h the descript ive te rminology deve l ­
oped b y Jansonius & C r a i g (1971) for the morpho log ica l ly related anne l id pa lyno ­
morphs (scolecodonts; see F i g . 3): 
- b igh t : concavi ty of the outside face of a jaw, open to the posterior side; 
- dentary: series of denticles a long the inner dorsal marg in ; i n some forms the denta-

ry is edenticulate; 
- depth : largest d imens ion of the inner or outer face of a j aw perpendicu la r ly to the 

dentary a n d i n the plane go ing through the dentary, measured from the base of 
the dentary to the ramal extremity; 

- fa lca l arch: concave marg in of the falx, may be denticulate or edenticulate; 
- falx: s ickle-shaped extension of the anterior part of the jaw, often fo rming a h o o k or 

a fang; 
- fenestra: i n dorsa l v i e w the translucent part approximate ly cor responding to the 

myocoe l ic opening; 
- l eng th : largest d imens ion of a j aw paral le l to the med ian axis, between posterior-

most and anterior-most points. 
- myocoe le : space inside, and more or less enclosed by, the jaw, usua l ly ex tending to 

the t ip of the denticles; 
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- myocoe le open ing : out l ine of the latero-ventral marg in of the j aw faces, enc los ing 
the myocoele . 
In a scolecodont the anterior side is the side of the falx. The ventra l side is the 

side of the falcal arch and dentary. 

Fig. 1. Copepod descriptive terminology. 
1 - Diagrammatic ventral view of Pseudocalanus (after Barnes, 1987); 1: 1st antenna; 2nd antenna; 3: 
mandible; 4: maxilla; 5: maxilliped; 6: 1st swimming foot; 7: 2nd swimming foot; 8: 3rd swiming foot; 
9:4th swimming foot; 10: genital operculum; 11: 2nd abdominal somite; 12: 3rd abdominal somite; 13: 
anal segment; 14: caudal ramus; 15: 2nd maxilla; 16: head with first somite fused; 17: 2nd thoracic 
somite; 18: 3rd thoracic somite; 19:4th and 5th thoracic somites (fused); 20: genital segment (6th thora­
cic somite and 1st abdominal somite). Note that in Pseudocalanus the fifth pair of swimming feet is 
missing. 
2 - Organisation of a calanoid swimming foot of Candacida norvegica (redrawn from Sars, 1911). 1: 
coxa; 2: basipodite; 3: protopodite; 4:1st segment of the exopodite; 5: 2nd segment of the exopodite; 6: 
second-most distal segment of the exopodite; 7: most distal segment of the exopodite; 8: exopodite; 9: 
processes; 10: brushy hairs; 11: endopodite. 
3 - Intercoxal plate of a calanoid copepod of the Candaciidae (drawn after a sample made available by 
M . Kouwelaar); 1: intercoxal plate; 2: coxa; 3: basipodite. 
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proximal articulation 

distal end distal articulation 

Fig. 2. Copepod appendage descriptive terminolog y. 
1 - First or second segment of the exopodite of a swimming foot. 
2 - Second-most distal segment of the exopodite of a swimming foot; a-f: implantations. 
3 - Most distal segment of the exopodite of a swimming foot. 

external side 

Fig. 3. Scolecodont descriptive terminology (after Jansonius & Craig, 1971). 
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P a l y n o m o r p h s o r ig ina t i ng f rom copepod exoskeletons 

P a l y n o m o r p h Type 1 ( P M 1) (PL 2, f ig. 3) 

L e n g t h - w i d t h ratio <1. Two m a i n articulations; the upper one is approximate ly as 
w i d e as the lower one. Lateral side w i t h denticulat ion. Single implanta t ion , half the 
size of the articulations, situated between the lateral denticulate ornamentat ion and 
the lower art iculat ion. Size v a r y i n g between 100 and 250 urn. C o l o u r general ly l ight 
b r o w n , occasional ly either dark to opaque or transparent. 

P M 1 represents the first or the second segment of the exopodite of a s w i m m i n g 
foot of a member of the Candaci idae . 

P a l y n o m o r p h Type 2 ( P M 2) (PI. 2, f ig. 4) 

L e n g t h - w i d t h ratio between 2 and 4. Two m a i n articulations; the uppe r one is 
on ly a little larger than the lower one. Lateral side ornamented w i t h three different 
scales of dent iculat ion, each separated b y an implanta t ion. M e d i a l side w i t h o u t den­
t icula t ion and w i t h five implantat ions. Size strongly v a r y i n g between 120 and 420 
urn. P igmenta t ion sometimes very strong. Short hairs m a y occur o n the upper sur­
face of the p a l y n o m o r p h . Very rare specimens occur wi thou t the lateral dent icula­
t ion. These are less w e l l preserved as denticulated specimens; they are ve ry t h in and 
transparent. 

A l t h o u g h some Candaci idae do not show a lateral dent icula t ion at the second-
most d is ta l segment of the exopodite of the s w i m m i n g feet, it is a characteristic fea­
ture of the fami ly (pers. c o m m . J .C. v o n Vaupe l Kle in ) . P M 2 is the second-most d is ta l 
segment of the exopodi te of s w i m m i n g feet of a member of the Candaci idae . 

P a l y n o m o r p h Type 3 ( P M 3) (PI. 2, figs. 6,8-9) 

L e n g t h - w i d t h ratio >5. Single superior art iculation. N o implantat ions. Den t i cu la ­
t ion often occurs o n the lateral side. The denticles decrease i n size distally. Den t icu la ­
t ion is s e ldom seen o n the med ia l side. Some specimens assignable to this category 
do not s h o w any dent icula t ion at a l l . Pa lynomorphs are bent, faintly s inuso ida l or 
straight; they are wides t at the upper half of the appendage. P igmenta t ion general ly 
darker than i n P M 1 and 2. Size v a r y i n g between 130 and 200 μπ ι . 

A s dent icula t ion of the lateral side of the terminal spine is a c o m m o n feature 
among copepods, P M 3 can on ly be identif ied as the most dis ta l exopodite of the 
s w i m m i n g foot of a calanoid copepod. 

P a l y n o m o r p h Type 4 ( P M 4) (PI. 2, f ig. 7) 

Single super ior art iculat ion. Pa lynomorphs are bent and have no dent icula t ion. A 
faint l ong i tud ina l l ineat ion can be seen o n these pa lynomorphs . 

P M 4 is ident i f ied as the dis tal segment of one of the fifth pa i r of s w i m m i n g feet 
of several possible species of male calanoids. 
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P a l y n o m o r p h Type 5 ( P M 5) (PL 2, f ig. 5) 

P M 5 is s imi la r to P M 4. It can be differentiated, however, b y its spherical p r o x i ­
m a l ar t iculat ion. 

Because of its s imi la r i ty to P M 4, P M 5 is also identif ied as the dis ta l segment of 
one of the fifth pa i r of s w i m m i n g feet of several possible species of male calanoids. 

P a l y n o m o r p h Type 6 ( P M 6) (PL 2, figs. 4,6) 

Shape approximate ly pentagonal, elongated perpendicular ly to the basal side. 
The three l ower sides s l ight ly concave, the two upper sides s l ight ly convex; the top is 
truncated. A n t e r i o r and posterior sides have different structures. The anterior side 
has four holes i n the upper half of the pentagon, two are perpendicular to the p lane 
of observat ion and two are paral le l to it. These elongate holes are situated symmet r i ­
cal ly a round the m i d d l e l ine, perpendicular to the base. Some of the pa lynomorphs 
of this type can have a hole i n the m i d d l e part of the lower half, some have a m e d i a l 
constr ict ion. These plates are thicker than most of the other crustacean pa lyno ­
morphs . Size v a r y i n g between 50 and 100 urn. C o l o u r generally l ight greyish b r o w n . 

P M 6 is ident if ied as the intercoxal plate between the two coxa of a copepod 
swimming- foo t . The type was recognised i n a dissected specimen be long ing to the 
genus Candacia. 

P a l y n o m o r p h Type 7 ( P M 7) (PL 4, f ig. 3) 

Tubular segment w i t h an ornamentat ion of densely spaced p igmented hairs. The 
hairs l ook l ike a short mane. The tubular segment is greyish b r o w n , the hairs are 
darker. L e n g t h 180 urn. 

P M 7 is a copepod fragment, representing a segment of the antenna of a male 
Candacia at the locat ion were the mane disappears. 

P a l y n o m o r p h Type 8 ( P M 8) (PL 3, f ig. 8) 

E longa ted transparent double spine. A t its base this p a l y n o m o r p h has a trans­
parent sh ie ld f rom w h i c h a double spine emerges, c. 8 urn w i d e and 150 urn long . 
The sh ie ld is larger at the base than at the point where the spines are attached. 

Spines corresponding to P M 8 are identified as the rost rum of a calanoid copepod. 

P a l y n o m o r p h Type 9 ( P M 9) (PL 4, f ig. 1) 

Series of convex denticles ornamented b y a str iat ion converging to the t ip . A base 
l ine is present, concave at the tooth base. C o l o u r transparent. Size c. 120 urn. 

P M 9 is ident i f ied as the gnathobasis of the mandib le of a copepod. 

P a l y n o m o r p h Type 10 ( P M 10) (PL 4, f ig. 5) 

D e p t h to length ratio c. 1. Falca l arch ve ry reduced. Dentary near ly edenticulate. 
A large fenestra and a smaller one are present. A smal l b ight can be observed. 
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Leng th 95 urn. C o l o u r l ight to dark b r o w n . 
P M 10 includes te rminal fragments of the gnathobasis of the mandib les of 

ca lanoid copepods. 

P a l y n o m o r p h Type 11 ( P M 11) (PL 4, f ig. 6) 

Shape t r iangular w i t h a r ight angle at the posterior ventra l side. D e p t h and 
length approximate ly equal . The falx is a double hook. The falcal arch is sma l l . N o 
dentary can be seen. A fenestra can be observed from the second hook to the m y o ­
coele opening . N o bight can be seen. Leng th 45 urn. C o l o u r l ight to dark b r o w n . 

P M 11 includes te rminal fragments of the gnathobasis of the mandibles of the 
ca lanoid copepods. 

P a l y n o m o r p h Type 12 ( P M 12) (PL 4, f ig. 8) 

L e n g t h to depth ratio >1. Falx formed b y a s l ight ly cu rved hook. The falcal arch 
shows a faint dentation. A dentary exists but wi thou t denticles. The fenestra is re­
duced. The bight is large (1/3 of the length) and is located o n the ventra l posterior 
side. L e n g t h 60 urn. C o l o u r opaque to b r o w n . 

P M 12 includes te rminal fragments of the gnathobasis of the mandib les of the 
ca lanoid copepods. 

P a l y n o m o r p h Type 13 ( P M 13) (PL 3, f ig. 1) 

P a l y n o m o r p h composed of l ight b r o w n tissue. Two branches bifurcate approx i ­
mately half w a y the tissue. The branches show a variable pattern of bifurcat ing smal ­
ler branches. A 'head ' is v is ib le w i t h two less irregular branches. Size v a r y i n g 
between 100 to 200 urn. 

P M 13 is the sternite of a copepod, caudal of the mouth, at the level of the mandibles. 

P a l y n o m o r p h Type 14 ( P M 14) (PL 3, figs. 2-3) 

Tubular segment. L e n g t h / w i d t h ratio variable; length v a r y i n g between 80 and 
100 urn, w i d t h between 40 and 30 urn. C o l o u r transparent to l ight b r o w n . 

These tubular segments cou ld represent copepod tai l segments. 

P a l y n o m o r p h s o r ig ina t i ng f rom crustacean exoskeletons 

P a l y n o m o r p h Type 15 ( P M 15) (PL 3, figs. 9-11) 

Elongated and cu rved pa lynomorph . Shape can be best described as the shape of 
an elephant tusk. C a p i l l a r y channel present i n the convex side of the fragments. 
Leng th 200-300 urn, w i d t h 4 urn at one end to 20 urn at the other end. 

These elongated curved pa lynomorphs cou ld not be identif ied w i t h certainty 
th rough direct compar ison. However , a crustacean (probably copepod) affinity is 
plausible , since their percentages i n sediment samples show a correlat ion coefficient 
of 0.9 w i t h the percentage of the s u m of the copepod exopodite segments. P M 15 is 
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also k n o w n from sediments of the Sea of O m a n (Carat ini et al . , 1978, p l . 3, f ig. 7). 

P a l y n o m o r p h Type 16 ( P M 16) (PI. 4, f ig. 2) 

Shape s l ight ly flattened triangular. The external side is the triangle-base. The pos­
terior side is one side of the triangle. The other side is denticulate. N o falx or falcal 
arch can be seen here. The first denticle is underdeveloped, w h i l e the second is over­
developed. The myocoele open ing and the posterior side coincide. Here , the out l ine 
of the p a l y n o m o r p h near ly coincides w i t h the myocoele, on ly the denticle-ends are 
not ho l low. A sma l l b ight is present o n the dorsal side of the posterior marg in . 
Leng th 60 urn, depth s l ight ly smaller. C o l o u r transparent. 

P M 16 c o u l d represent the resistant part of an a m p h i p o d mandib le (see V o n k , 
1988, f ig. 28). 

P a l y n o m o r p h s o r i g ina t i ng f rom ar thropod exoskeletons 

P a l y n o m o r p h Type 17 ( P M 17) (PI. 4, fig. 7; F i g . 4:1) 

Fossa and posterior side coincide. Sickle-shaped, w i t h a s l ight ly f lar ing handle . 
M e a n size 60 urn. C o l o u r opaque. 

P M 17 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 18 ( P M 18) (Fig. 4: 2) 

Fossa and posterior side coincide. Feather-shaped, s l ight ly curved at the t ip. 
There is a sma l l constr ict ion between the handle and the feather. M e a n size 60 urn. 
C o l o u r opaque. 

P M 18 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 19 ( P M 19) (Fig. 4: 3) 

S imi la r shape as P M 18, but w i t h a denticle of 10 urn rooted just above the con­
strict ion, pos i t ioned o n the side towards w h i c h the feather is curved . M e a n size 60 
urn. C o l o u r opaque. 

P M 19 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 20 ( P M 20) (Fig. 4: 4) 

S imi l a r shape as Type 19, but the denticle is reduced to 4 μ ι η and pos i t ioned at 
1/3 of the distance between the constrict ion and the t ip of the p a l y n o m o r p h . The t ip 
of the p a l y n o m o r p h and the denticle diverge. The handle is flaring. M e a n size 60 urn. 
C o l o u r opaque. 

P M 20 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 21 ( P M 21) (Fig. 4: 5) 

Fossa and posterior side coincide. N o constriction. Reduced denticle, pos i t ioned 
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Fig. 4. Palynomorph types representing opaque arthropod mandible remains. 1: P M 17; 2: P M 18; 3: 
PM 19; 4: P M 20; 5: P M 21; 6: P M 22; 7: P M 23; 8: P M 24; 9: PM 25. 

at 1/3 of the w h o l e pa lynomorph . Fossa and posterior side coincide. Size v a r y i n g 
between 40 and 80 urn. C o l o u r opaque. 

P M 21 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 22 ( P M 22) (Fig. 4: 6) 

O v e r a l l shape resembles that of P M 21, but the p a l y n o m o r p h is re lat ively w i d e 
and the denticle is m u c h more pronounced and posi t ioned next to the t ip of the pa ly ­
n o m o r p h . Size v a r y i n g between 40 and 80 urn. C o l o u r opaque. 

P M 22 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 23 ( P M 23) (Fig. 4: 7) 

O v e r a l l shape resembles that of P M 18, but the tip is f inely denticulate a n d the 
handle is s t rongly f lar ing. M e a n size 60 urn. C o l o u r opaque. 

P M 23 is considered to represent mandib le remains of arthropods (? crustaceans). 

P a l y n o m o r p h Type 24 ( P M 24) (Fig. 4: 8) 

Fossa and posterior side coincide. Denticulate falx. Denticles are of i r regular 
length (1 to 4 μπ \ ) . The dentary is edenticulate. Size v a r y i n g between 40 a n d 80 urn. 
C o l o u r opaque. 

P M 24 is considered to represent mandib le remains of arthropods (? crustaceans). 
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P a l y n o m o r p h Type 25 ( P M 25) (Fig. 4: 9) 

Fossa and posterior side coincide. A c u t e denticles decreasing i n size f rom the falx 
(6 urn) to the dentary. Size v a r y i n g between 40 and 80 urn. C o l o u r opaque. 

A p a l y n o m o r p h resembling P M 25, but w i t h on ly three denticles i n c l u d i n g the 
falx was ident i f ied b y v a n Gee l et a l . (1989) as the mandibles of species of the insect 
genus Sialis (alder fly). S imi l a r ly it is here suggested that P M 25 migh t represent the 
remains of an insect mandible . Yet, a crustacean affinity cannot be complete ly ru led 
out. 

P a l y n o m o r p h Type 26 ( P M 26) (Plate 4: 4) 

E longa ted fragments w i t h acute denticulat ion. The denticles are loosely spaced. 
P M 26 represent unident i f ied ar thropod remains. 

P a l y n o m o r p h Type 27 ( P M 27) (PL 3, f ig. 7) 

Elongated bifurcated fragments. P M 27 represent unident if ied ar thropod remains. 

P a l y n o d e b r i s o r i g ina t i ng f rom crustacean exoskeletons 

Palynodebr is Type 1 (PD 1) (PL 1, figs. 3-7; F i g . 5:1-8) 

Organ ic debris consis t ing of fragmented transparent tissue of v a r y i n g shape and 
size. Tissue structureless. Larger fragments (60 to 100 urn) have the shape of an e lon­
gated hexagon, of w h i c h one side can be shorter than the other; elongated pentago­
na l shapes were also found. Larger fragments often folded a long the longer axis; this 
axis can be bent. The folded tissues are sometimes found connected i n rows of t w o or 
three elements. Often fragments can be found w i t h grey to opaque inclusions; such 
fragments s h o w also evidence of local th inn ing or disintegrat ion of the tissue. 

Identif ication of P D 1 i n terms of a crustacean affinity has been exper imenta l ly 
suppor ted. A copepod was subjected to the ac id treatment app l i ed i n sample prepa­
rat ion for pa lyno log ica l analysis. The exoskeleton of this copepod appeared to be 
acid resistant. Af ter ac id treatment, par t icular ly the dorsal somites s t i l l s h o w e d a 
clear del ineat ion. The remains are frequently constituted of elongated transparent 
tissues, fo lded a long the longer axis. Thus there is a direct correlat ion between at 
least the larger fraction of P D 1 and the dorsal somites of crustacean exoskeletons. 
Since the smaller fraction of the particles d isplays ident ical opt ical properties, the 
majority of transparent pa lynodebr is may be considered to have a crustacean (possi­
b l y even copepod) o r ig in . 

D i s c u s s i o n 

The descr ip t ion of organic remains of chit inous crustacean exoskeletons f rom 
mar ine deposits have attracted little attention. Yet, the regular occurrence of pa lyno ­
morphs representing remains of crustacean exoskeletons have earlier been detected 
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Fig. 5. Shape variation within PD 1.1: hexagonal; 2: hexagonal with one shorter side; 3: pentagonal; 4: 
hexagonal, folded; 5: hexagonal with a shorter side, folded; 6: pentagonal, folded; 7: two attached dor­
sal somites; 8: three attached dorsal somites. 

i n Neogene to Recent pa lyno log ica l assemblages f rom a var ie ty of sedimentary set­
tings, r ang ing from coastal-brackish (Mateus, 1992) to deep-sea (Boulouard & D e l a u -
ze, 1966; Cara t in i et a l . , 1975, 1978; v a n der Kaars , 1987) environments . The large 
number of dis t inct ive p a l y n o m o r p h types found i n the Banda Sea emphasises the 
variety of exoskeleton remains that m a y contribute to the compos i t ion of pa lyno ­
m o r p h associations i n y o u n g deep-sea sediments. 

M o r e importantly, the present paper demonstrates that also the pa lynodebr is 
component of pa lynologica l residues from y o u n g sediments m a y par t ly originate 
from crustacean exoskeletons. A n assessment of the overal l palynodebr is compos i t ion 
i n the Banda Sea (van Waveren & Visscher, i n press)) suggests that i n add i t ion to 
about 72% palynodebr is of terrigenous or ig in , about 28% of the debris corresponds to 
P D 1. A l s o f rom a quantitative point of v iew, therefore, the possibi l i ty of the presence 
of a significant crustacean-derived component should be taken into considerat ion 
w h e n at tempting to identify the o r ig in of organic carbon i n y o u n g marine sediments. 
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The poss ib i l i ty of a quantitative prominence of exoskeleton mater ial is further 
suppor ted b y the presence of degradat ion products of P D 1. A p a r t f rom pa lynode­
bris and pa lynomorphs , also amorphous organic material represents an impor tant 
constituent of the organic matter associations i n the Banda Sea. B r o w n or 
greyish/ t ransparent diffuse aggregates frequently dominate the pa lyno log ica l resi­
dues. A l s o the organic fraction <10 urn, s ieved away d u r i n g sample processing, 
m a i n l y consists of amorphous material . No tab ly i n the T imor transect diffuse aggre­
gates are p redominan t ly of the greyish/ t ransparent type. These aggregates s h o w an 
opt ical affinity to degraded greyish / transparent particles that m a y s t i l l be catego­
r ised as P D 1. 

A l t h o u g h the pa lynodebr is and m a n y of the p a l y n o m o r p h types cou ld not yet be 
ident if ied b e l o w the level of crustaceans, the present author believes that b y far the 
greatest part of the crustacean exoskeleton remains originate from planktonic cope­
pods. In the Banda Sea and adjacent seas i n the I n d o - M a l a y a n / A u s t r a l i a n region, 
copepod communi t ies largely dominate the zoop lank ton biomass (Baars et a l . , 1990; 
A r i n a r d i et a l . , 1990; O t h m a n et al . , 1990). Species divers i ty is p r inc ipa l ly de termined 
b y representatives of the suborder Ca lano ida . A number of the p a l y n o m o r p h types 
encountered can be correlated w i t h exoskeletons of calanoid species, specif ical ly 
w i t h representatives of the fami ly Candaci idae . 

In order to exp la in the preservation potential of a variety of an ima l and fungal 
pa lynomorphs , c laims w i t h respect to their chi t inous nature (Traverse, 1989) need to 
be ver i f ied b y thorough invest igat ion of both fossil and m o d e r n material . H o w e v e r , 
a m o n g such pa lynomorphs , remains of ar thropod skeletons are l ike ly to be par t ia l ly 
composed of chi t in . In general, the ch i t in content of m o d e r n deep-sea sediments is 
reported to be ve ry l o w (Poulicek et al . , 1986). R a p i d decomposi t ion of ch i t in is nota­
b l y due to the act ivi ty of (aerobic) chitinoclastic bacteria (ZoBel l & Rit tenberg, 1938; 
C a m p b e l l & W i l l i a m s , 1951; Seki & Taga, 1963; Seki , 1966). A l t h o u g h rates of bacte­
r ia l decompos i t ion m a y drast ical ly decline w i t h decreasing water temperature (Seki, 
1966), chit inoclastic bacteria remain active under deep-sea condi t ions ( K i m & Z o B e l l , 
1972). Occurrences of wel l -preserved chi t inous pa lynomorphs i n sediments of the 
Banda Sea, therefore, needs to be ascribed to external phys ica l and chemical factors 
that m a y enhance ch i t in preservability. 

It has been demonstrated that the bu r i a l rate and the degree of organic matter 
preservat ion i n mar ine sediments are pos i t ive ly correlated w i t h sedimentat ion rate 
(Berner, 1989; Betts & H o l l a n d , 1991). In accordance w i t h the results of a comprehen­
sive palynofacies analysis (see v a n Waveren & Visscher, i n press), it is suggested that 
mass-occurrence of crustacean exoskeleton remains i n sediments from the Banda Sea 
is related to the combined effects of (1) h i g h p lank ton produc t iv i ty caused b y season­
al u p w e l l i n g (Schalk, 1987; Gieskes et al . , 1988; Baars et al . , 1990) and (2) h i g h sedi­
menta t ion rate (Ganssen et al . , 1989; Si tumorang, 1992). 

C o n c l u s i o n s 

Envi ronmenta l conditions that are conducive to the preservation remains of ch i t in ­
ous crustacean skeletons i n y o u n g sediments p reva i l i n the Banda Sea. In pa lyno ­
logica l residues these remains inc lude a variety of p a l y n o m o r p h types, as w e l l as 
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quanti tat ively prominent transparent palynodebr is and its diffuse degradat ion pro­

ducts. Selective preservation of the chit inous remains is considered to be related to 

the effects of h i g h p lank ton produc t ion and h i g h sedimentat ion rate. 
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Plate 1 

1. Specimen of Pseudocalanus elongatus (Boeck), after palynological treatment; slide COP-2; χ 100. 
2. Former picture, redrawn with emphasis on the dorsal somite delineation. 
3. PD 1; three attached fragments, medially folded; sample SN-379; x 400. 
4. PD 1; two attached fragments, medially folded; sample SN-379; x 400. 
5. PD 1; fragment curled inwards; sample SN-379; x 800. 
6. PD 1; hexagonal fragment; sample SN-379; x 400. 
7. PD 1; pentagonal fragment, medially folded; sample SN-379; x 400. 
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Plate 2 

1. Appendages of Pseudocalanus elongatus (Boeck), after palynological treatment; slide COP-2; χ 100. 
2. Former picture, redrawn with emphasis on the segmentation and shape of the terminal foot. 
3. P M 1; copepod exopodite segment; sample SN-240; χ 400. 
4. P M 2; copepod exopodite segment; sample SN-240; x 400. 
5. P M 5; copepod exopodite segment; sample SN-240; x 400. 
6. P M 3; copepod exopodite segment; sample SN-240; χ 400. 
7. PM 4; copepod exopodite segment; sample SN-240; x 400. 
8. P M 3; copepod exopodite segment; sample SN-240; χ 400. 
9. P M 3; copepod exopodite segment; sample SN-240; χ 400. 
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Plate 3 

1. P M 13; copepod sternite; slide SN-192; χ 400. 
2. P M 14; copepod tail fragment; slide SN-192; χ 400. 
3. P M 14; copepod tail fragment; slide SN-192; χ 400. 
4. P M 6; copepod intercoxal plate, front side; slide SN-196; x 800. 
5. P M 6; copepod intercoxal plate, back side; slide SN-196; χ 800. 
6. P M 6; copepod intercoxal plate, front side; slide SN-196; x 800. 
7. P M 27; unidentified arthropod fragment; slide SN-169, x 400. 
8. P M 8; copepod rostral spine; slide SN-196; χ 800. 
9. P M 15; elongated curved crustacean palynomorph; slide SN-44; χ 400. 
10. P M 15; elongated curved crustacean palynomorph; χ 500 (SEM). 
11. P M 15; elongated curved crustacean palynomorph; slide SN-188; x 800. 
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Plate 4 

1. P M 9; copepod mandible gnathobasis; slide SN-244; χ 800. 
2. P M 16; amphipod mandible remain; slide SN-240; χ 800. 
3. P M 7; copepod antenna remain; slide SN-168; χ 500. 
4. P M 26; unidentified arthropod fragment; slide SN-168; χ 800. 
5. P M 10; copepod mandible gnathobasis; slide SN-233; x 400. 
6. P M 11; copepod mandible gnathobasis; slide SN-196; χ 400. 
7. P M 17; arthropod mandible remain; slide SN-120; χ 1000. 
8. P M 12; copepod mandible gnathobasis; slide SN-233; χ 400. 
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