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One adaptation of plants to cope with drought or frost stress is

to develop wood that is able to withstand the formation and

distribution of air bubbles (emboli) in its water conducting xylem

cells under negative pressure. The ultrastructure of interconduit

pits strongly affects drought-induced embolism resistance, but

also mechanical properties of the xylem are involved. The first

experimental evidence for a lower embolism resistance in

stems of herbaceous plants compared to stems of their

secondarily woody descendants further supports this

mechanical-functional trade-off. An integrative approach

combining (ultra)structural observations of the xylem, safety-

efficiency aspects of the hydraulic pipeline, and xylem–phloem

interactions will shed more light on the multiple adaptive

strategies of embolism resistance in plants.
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Introduction
According to the generally accepted cohesion-tension

theory, capillary wicking of cell walls is the driving force

in plants that creates a negative pressure, allowing tran-

spiration to pull up water towards the leaves via a 3-D

conduit network [1]. This negative pressure makes the

liquid xylem sap metastable, and thus vulnerable to

vaporization by cavitation [2]. Cavitated conduits may

become air-filled or embolized, and can no longer trans-

port water. Extensive embolism formation in the xylem

can block most of the water flow, potentially leading to
www.sciencedirect.com 
branch sacrifice or even plant death [3–4]. Therefore, the

resistance to drought or frost-induced embolism is an

important adaptive trait for the growth and survival of

plants [5,6,7��], evolving along with other strategies in-

cluding rooting depth, leaf structure, shifts in biomass

allocation, CAM metabolism, water storage and/or

drought and frost avoidance.

This concise review describes how embolisms originate

and spread into the conduit network, and highlights

which mechanical properties of the xylem are involved

in drought-induced embolism resistance. On the basis of

original embolism measures in Arabidopsis, the mechan-

ical-functional trade-offs may provide a novel additional

explanation why some herbaceous flowering plant groups

‘reinvented’ wood development and turned again into the

woody ancestral state (i.e. secondary woodiness).

Why and how do embolisms originate and
spread into the xylem?
Vulnerable hydraulic pathway

When liquid water pressure drops below its saturated

vapour pressure (2.3 kPa absolute at 208C, or �99 kPa

below atmospheric at sea level), it becomes metastable

relative to the lower energy vapour phase [2]. As such,

liquid water under negative pressure is vulnerable to

cavitation: the abrupt phase change to vapour (cf. boiling).

Spontaneous initiation of vapour bubbles in pure meta-

stable water (homogenous nucleation) does not seem to

be responsible for cavitation in plant xylem, because it

occurs at pressures far more negative (between �30 and

�140 MPa based on experimental measures [8]) than

physiological xylem pressures (often between �0.1 and

�10 MPa with exceptions to >�20 MPa [9–10]). Instead,

xylem cavitation is likely heterogeneous, triggered by

nucleating sites, which are most likely either small gas

bubbles in conduits or water-conduit wall boundaries

experiencing weaker adhesion forces [11].

Drought-induced embolism

Experimental evidence points to ‘air-seeding’ as

an important cause of embolism by drought stress

[2,11–12]. As more negative sap pressure develops during

drought, air is aspirated into the functional conduit

through porous sections of the conduit wall. Once inside

the conduit, these air bubbles may seed the phase change

to vapour, causing the negative sap pressure to rise

abruptly to near atmospheric. The gas bubble then is
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Fine-scale interconduit pit adaptations regulating drought-induced

embolism in gymnosperms and angiosperms. Interconduit pits showing

torus-margo pit membranes in gymnosperms (top row) and

homogeneous pit membranes in angiosperms (middle and bottom

rows). (a) Pit membranes in a relaxed state between two functional

conduits facing no hydraulic stress. (b) and (c) A prolonged period of

drought increases the pressure difference between the water-filled and

the embolized conduit, causing the porous pit membranes to deflect. At

a critical pressure difference, the capillary seal can give way, allowing

air-seeding among adjacent conduits that exacerbates the water flow

towards the leaves. Column c illustrates adaptations in pit quality

characters that can prevent air-seeding at the same pressure difference,

in comparison to the embolism sensitive pits shown in column b, such as

the increased size ratio of tori versus pit aperture diameters in

gymnosperms (top), and the presence of highly developed vestures

(middle) or thicker pit membranes with reduced pores in angiosperms

(bottom).
free to expand to fill the conduit and produce an embo-

lism as water is drained by the surrounding transpiration

stream. The evidence for air-seeding is that negative

embolism pressures are usually equal and opposite to

the pressure required to inject air into the intact conduits

[13].

Important sites for air-seeding are openings in the sec-

ondary walls of neighbouring conduits called interconduit

pits (Figure 1 [12]). These pits function to restrict the

spread of air throughout the conduit network in the event

of conduit damage, but at the same time allow lateral

water transport via pores in the pit membranes (PMs).

Conduits become damaged and air-filled not only during

the course of normal development in the case of ruptured

protoxylem strands, but also from abscission, breakage,

herbivory, or other damage, although it remains to be
Current Opinion in Plant Biology 2013, 16:287–292 
explored whether there are other causes for air-filled

vessels. The nano-scale pores of the interconduit PMs

are narrow enough to trap the meniscus against a sub-

stantial pressure difference between an embolized and a

functional conduit, thus inhibiting air entry under normal

conditions. But when the pressure difference becomes

too large during drought, the capillary seal can give way,

causing air-seeding through interconduit PMs

(Figure 1b). In this way, embolism propagates from con-

duit to conduit. The amount of embolized cells can be

measured in terms of loss of hydraulic conductivity at

various negative pressures, resulting in so-called vulner-

ability curves (VCs, Figure 2). Since VCs measure embo-

lism rates, and because not all cavitation events must

necessarily lead to embolism formation, ‘embolism resist-

ance’ is a more correct term for the commonly used

‘cavitation resistance’ in plant physiology.

Frost-induced embolism

Embolism formation can also develop due to freeze–thaw

cycles, and mainly depends on the diameter of the con-

duits [14–15]. Air is insoluble in ice, forming gas bubbles

in the conduits during freezing. On thawing, these

bubbles may expand when the negative pressure allows

countering the bubble-collapsing force of the surface

tension (thaw-expansion hypothesis). Consequently,

frost-induced embolism can be amplified by drought

stress [16–17].

Fine-scale interconduit pit adaptations
regulate drought-induced embolism
resistance
Mechanical behaviour of pit quality characters

Ultrastructural modifications of interconduit pits are good

predictors to explain embolism resistance via air-seeding

[18–22]. Within angiosperms, the huge variation in PM

thickness (70–1900 nm) and maximum PM porosity (10–
225 nm) show that species with thicker PMs have smaller

PM pores and are better adapted to avoid air-seeding

(Figure 1c bottom [19]). Thicker PMs are also presumed

to be mechanically stronger, causing more resistance to

stretching and preventing PM pores to become larger

[18,24]. Likewise, narrower pit chambers [22,25] and

vestured pits (Figure 1c middle [23]) prevent excessive

PM deflection in some groups. The mechanical behaviour

of pits and their PMs remains to be investigated

thoroughly, and therefore also PM chemistry [26] needs

special attention with reference to the pit type and

developmental stage. Noncellulosic compounds, such

as pectins and hemicelluloses, occur in gymnosperm

PMs [27], but the chemical composition of angiosperm

PMs seems to be more diverse [18,28–29]. According to

recent studies, intervessel PMs contain little or no pectic

homogalacturonans and rhamnogalacturonan-I [29–30],

which raises serious doubts about the swelling/shrinking

hypothesis of interconduit PMs related to the ionic effect

[31–34].
www.sciencedirect.com
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Figure 2
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Xylem vulnerability to embolism in Arabidopsis thaliana wild-type (WT)

and the woody soc1-6 ful7 mutant. Vulnerability curves of the WT

(closed circles) and the mutant (open circles) show a significant

difference (Student’s t-test, P < 0.05). The P50, or the pressure inducing

50% loss of hydraulic conductivity due to embolism formation,

corresponds to �3.54 MPa in the woody mutant stems versus

�2.64 MPa in the WT stems (red lines). Plants were grown under long

days (16 hours light per day). Each data point represents the mean value

from two to four plants and bars represent standard errors. Dotted grey

lines are sigmoidal regressions.
Within conifers, embolism resistance of torus-margo pits

in unicellular tracheids seems most closely correlated to

the size ratio of torus versus pit aperture diameter [20–
21,25]. This suggests that the adhesion of the torus to the

pit border is a major determinant of drought-induced

embolism resistance (seal capillary-seeding, Figure 1c

top [20]), although some conifer species show plasmo-

desmatal pores in their tori assuming air-seeding through

these tori pores [35].

Pit quantity characters

The chance of initiating air-seeding through a single PM

with large pores appears to be larger when more intervessel

pits per vessel are present (rare pit hypothesis [36]). How-

ever, while the link between pit quantity per vessel and

vulnerability to embolism is demonstrated in some angios-

perm groups [37], it is lacking in others [22]. Opponents of

the rare pit hypothesis use the quantity of intervessel

pits per vessel to explain why long-vesseled species

usually show vulnerable embolism rates [37–38]. The

vulnerability of large vessels, however, is the subject of

contradictory opinions. For instance, recent studies in

grapevine based on a wide range of traditional and up-

to-date in vivo techniques suggest that the high embolism
www.sciencedirect.com 
ratios in long-vesseled species may be a typical problem of

the commonly used centrifuge technique [39–41], while

others finding no long-vessel artefact [42].

More evidence for the mechanical-functional
trade-off in xylem
Wood density and thickness-to-span ratio

Embolism resistant species are often characterized by a

high wood density and a high thickness-to-span ratio of

water conducting cells [43–45], and some studies have

also highlighted increased fibre wall area, Modulus of

Elasticity, and Modulus of Rupture as additional trade-

offs [44]. The mechanical reinforcement in drought-

induced embolism resistant wood is often explained by

the stronger negative pressures in the conduits. Never-

theless, conduit implosion due to negative pressures has

never been observed in wood. Alternatively, conduit wall

reinforcement might prevent microfractures in walls [44]

that in turn might trigger heterogeneous nucleation from

air particles in walls or in intercellular spaces. But again,

there is no experimental evidence for these microfrac-

tures, leaving the underlying mechanisms for the mech-

anical-functional trade-off in the xylem tissue unresolved.

A new additional evolutionary hypothesis for secondary

woodiness

The existing mechanical-functional correlation in xylem

can be translated into a novel hypothesis explaining why

the habit shift from herbaceousness towards secondary
woodiness (SW) occurs in some angiosperms. This habit

shift was initially observed on islands by Charles Darwin

and described as insular woodiness [46]. Today, several

hypotheses are raised explaining why herbaceous

lineages undergo massive convergent evolutionary shifts

towards SW shrubs (summarized in [47]), but compelling

evidence for this increased woodiness remains absent.

Our Canary Island review shows that many of the SW

species are native to the markedly dry coastal regions,

suggesting for the first time a link between increased

woodiness and embolism resistance [48�]. However, we

want to emphasize that many SW lineages also occur in

very wet environments, suggesting the involvement of

multiple environmental factors. For instance, lack of frost

is an important criterion influencing the occurrence of SW

[49].

Embolism measures in herbaceous species are scarce

because of their fragile stems. Not surprisingly, the few

herbaceous species studied do have rigid stems, such as

corn [50] and bamboos [51�]. Recently, Tixier et al. [52�]
have managed to reconstruct VCs from the fragile herbac-

eous Arabidopsis thaliana stems. They demonstrate that

short-day plants with slightly more wood development at

the base of their stems are significantly more embolism

resistant than long-day plants with less wood develop-

ment, supporting the above-mentioned trade-off. We go

one step further and compare the herbaceous wild-type
Current Opinion in Plant Biology 2013, 16:287–292
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with the shrubby A. thaliana mutant [53,54�]. The VCs of

the woody mutant stems show significantly lower embo-

lism rates than VCs of the herbaceous accession grown

under the same growth conditions (Figure 2). This is the

first experimental evidence supporting increased embo-

lism resistance in SW shrubs compared to their herbac-

eous relatives.

Different strategies in embolism resistance
between angiosperms and gymnosperms
High risk versus safety

Angiosperms and gymnosperms have a strikingly differ-

ent strategy to cope with drought-induced  embolism

resistance: the majority of angiosperms show a risky

behaviour and operate close to their lethal hydraulic

limit (i.e. pressure resulting in 70–80% loss of conduc-

tivity), while most of the gymnosperms develop a much

safer hydraulic margin that is further away from their

lethal 50% boundary [3,4,7��]. The greater ability of

angiosperms versus gymnosperms to repair stem

embolisms may partly explain this different strategy

[55�].

Refilling embolized conduits

Positive xylem pressures have been linked to vessel

refilling in a variety of angiosperms, such as temperate

woody trees [56], woody tropical plants [57], and many

herbaceous species [51�]. Refilling has also been reported

under negative pressures, for instance in bay laurel [58]

and rice [59], and requires pressures that need to rise close

to atmospheric levels while the bulk xylem remains under

negative pressure [60]. This seems contradictory, but

what we do know is that sugars and ions from living

xylem and phloem cells are involved [58,60–61]. This is

demonstrated by amongst others girdling experiments

[38,58] and the observed transport of water and solutes

between phloem and xylem [62].

Conclusion and future prospectives
Various structure–function relationships in the xylem are

known to play a role in embolism resistance. Pit mem-

brane thickness and porosity are crucial to prevent

drought-induced embolism via air-seeding, and more

insights into PM composition in different cell types in

the xylem of angiosperms are urgently desired to under-

stand the interaction between the dead conduits and the

living cells. Emphasis is also placed on trade-offs between

mechanical wood properties and embolism resistance,

and is further supported by original embolism measures

showing that stems of secondarily woody Arabidopsis
mutants are more embolism resistant than the ones of

the herbaceous wild-type.

The self-regulation of water flow (ionic effect) and refill-

ing of embolized conduits suggest that water transport

does not entirely rely on a passive cohesion-tension

process, but also requires input from living cells. Future
Current Opinion in Plant Biology 2013, 16:287–292 
research should focus on these refilling mechanisms, and

continue to elaborate on a broad-scale integrative

approach linking xylem and phloem physiology with

in-depth anatomy of the hydraulic pathway [63�]. Exist-

ing database projects, such as TRY [64] and the Xylem

Functional Traits database [7��], are the necessary first

steps to accomplish this effort. Once we know the crucial

features characterizing embolism formation and refilling

in plants, we can find and manipulate the genes under-

lying these characters using woody model species [65] and

apply it to tree forest species. A global analysis on the

vulnerability of forests to drought shows that many trees

operate with narrow hydraulic safety margins, inferring

that embolism-related research will become increasingly

important under the current Climate Change predictions

[7��].
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