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PART I.

Plastic deformation of the Earth’s crust.

A series of interesting experiments concerning these problems by
(IrkXjS 2) throws much light on the relation of strength and confining

pressure. By applying high differential pressures on a block of lime-

stone under increasing confining pressures until permanent deformation

set in he showed that the confining pressure had no, or at any rate

a very small, influence on the elastic properties of the material. The

beginning of the deformative process is always the same elastic defor-

mation. Even the elasticity limit, the point at which the material yields
to the applied force, was hardly heightened during the increasing dif-

ferential pressure. The confining pressure had to be raised above the

original strength to prevent rupture (Pig. 1).
Thus the influence of the confining pressure on solid matter does

not interfere with its elastic properties, nor strength, it only changes
the character of its permanent deformation after the strength limit has

been passed.
Hence the difference between plastic deformation and rupture must

be found in different reaction to shearing forces and not in difference

in strength or elastic characteristics. Also as the elastic habit of the

solid remains unimpaired by raised differential pressure, some charac-

teristics of elastic deformation will be maintained during plastic defor-

') Jeffreys „The Earth'', 2nd ed., Cambridge 1929.
2

) Griggs, Deformation of rocks under high confining pressure. Journal of

Geology, Vol. 44, 1936, p. 541—578.

§ 1. Plastic deformation of solid matter under high confining

pressures has been insufficiently studied. Jeffreys 1) devotes a few

paragraphs to deformation of solid matter as a preface to his chapter

on the isostasy problem. He distinguishes two properties of solid matter

with regard to its behaviour to external forces: the Rigidity and the

Strength. The rigidity being the resistance to elastic stresses, the strength
the resistance to shearing forces. The strength has been surpassed when

a differential force results in a permanent deformation.

Therefore the strength equals the differential pressure necessary to

effect shearing or plastic deformation.
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mation. The latter thesis has been confirmed by Grigg's experiments,
where he found elastic afterworking, return, after plastic deformation

„even larger than could be calculated from the elastic modulus."

§ 2. By applying a differential pressure a set of forces is intro-

duced; the reaction on this set prevents rupture, to the maximum

strength of the material. The strength on each plane throughout
the material is unvariable as long as we regard isotropic mediae only.
Hence the material will yield along a plane, along which the set of

differential force is greatest. And as the intensity of this force, e, can

be calculated by

e = \ P sin
.

2a P= differential pressure

a = angle between shearingplane

and direction of force

e will be at a maximum along a plane with a= 4501).
This maximum value of P we will call the stress-limit.

Before actual movement along a shearing plane will occur another

reaction of the material must be overcome. This reaction is the friction

along the shearing plane. Obviously this friction depends on the charac-

ter of the material, but also on the pressure exerted on the shearing

plane. The friction due to the character of the material is the same

for all planes in an isotropic medium, but the pressure on the plane

') W. HOPKINS, Camb. Phil. Trans. 8, 1849.

Fig. 1.

Stress-strain diagram of Solenhofen limestone under varying confining pressures.

(redrawn from fig. 4 and 9, GRIGGS, „Deformation of rocks under high pressures”
Journ. Geol. Vol. XLIV).
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is dependent on external influences, partly on the confining pressure,

partly on the component of the differential force perpendicular to the

shearing plane. Hence when we define the strength as the differential

force needed to cause rupture (as Griggs does), strength must be the

sum of stress-limit and shearing-limit. The shearing friction is of quite

a different character to the stress-limit, although yielding it continues

to act, and introduces the time element. If the movement is very slow,
the shearing friction diminishes accordingly.

Or, when the confining pressure has raised the shearing friction

above the strength, a differential force equalling the strength will result

in a multitude of „latent" shearing planes, but no movement will take

place. A small addition to the differential force will result in a slow

motion along several planes, the velocity increasing with increase of

differential pressure. The latter phenomenon has been clearly illustrated

by Griggs's experiments. Irrespective of the initial velocities and the

later retardation, the velocities of plastic deformation in Griggs' experi-

ments are: (Fig. 2 and 3)

') The table has been measured from the graph Fig. 2, thus the values are

only approximative.

Fig. 2.

Diagram showing velocities of plastic
deformations, derived from the curve

with time intervals of fig. 1.

(redrawn from GRIGGS, loc. cit.)

Fig. 3.

Stress-rate of strain diagram derived

from the straight parts of the curves

of fig. 2.
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Values showing a distinct acceleration, and where the strain per time

unit is not a linear function of the shearing stress (Fig. 3). The

small rise of the yield point under high confining pressures, 10 % for

a confining pressure 4 X the original strength, may be due to compres-

sion of the material. It would perhaps be logical to assume a greater

strength for a closer packing of the constituents, but we must keep
in mind that as the elastic habit of the material was not influenced

by the high confining pressure, the compression can not have been very

large. Consequently, I think it more probable that the rise of 10 %
of the strength is only apparent, the shearing being so slow for low

values of the differential stress that it can not be distinguished from

elastic deformation. Theoretically the strength ,our definition of § 1,
and yield value will be one and the same point on the curve (compare

Fig. 3).
Another apparent contradiction between theory and experiment

throws an unexpected light on the relation plastic versus elastic de-

formation.

Griggs succeeded in causing rupture of the material, even under

confining pressures many times larger than the original strength, but

always after considerable plastic deformation. I do not think it pos-

sible that the increasing plastic deformation itself, increased the strength.
The strain curves with constant differential forces showed an initial

velocity of plastic deformation, which rapidly decreased until an equi-
librium was reached i.e. the straight part of the curves. However, before

rupture occurred we find an acceleration of this constant velocity. The

retardation of the initial velocity may be due to the continuation of

the elastic deformation, or continuation of the compression, during the

beginning of the plastic deformation. When the strain curve became

straight, the equilibrium between the viscosity and the differential pres-

sure had been attained. The final acceleration before rupture is probably
due to the finite dimensions of the experimental block of limestone i. e.

to the geometrical circumstances. This continuation of the elastic effect

explains the enlarged elastic afterworking, mentioned above. Also the

fact that by a large acceleration of the differential force higher ultimate

strength could be reached than by a slow acceleration, points to the

same continuation of elastic effect during plastic deformation.

However in geological processes the acceleration of the tangential

pressure will be extremely slow, and the dimensions practically infinite.

At a certain depth below the surface there will be found a confining

pressure slightly larger than the strength at the surface, compensating
the strength at that depth, slightly increased by compression. Tangential

folding forces may also slightly increase the strength, so that we may

have to go a little deeper still to find a confining pressure at which

rupture becomes impossible. As soon as the tangential force has sur-

passed the strength limit, plastic deformation will set in, but as the

material never looses its elastic habit the plastic deformation may pos-

sibly still be governed by certain laws of elasticity.

§ 3. Our inferences lead us to a distinction of matter in three

classes viz.
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(1) solid not plastic matter, having rigidity and strength, shearing fric-

tion small in comparison with its strength.

(2) plastic solid matter, having rigidity and strength, shearing friction

large in comparison with its strength.

(3) Fluids having no rigidity, strength nor shearing friction.

Therefore, if the strength is small, the shearing-friction need not

be large to allow plastic deformation e. g. as with wet clay, shoemakers

wax etc.

The distinction „brittle" and „ductile" are properties of the

material. As we have seen, a brittle material can be made to behave

plastically by high confining pressure i. e., the shearing friction is en-

larged by increasing the confining pressure. We can call the original

shearing friction, inherent to the kind of material, the „viscosity". An

increase of confining pressure does not affect the strength, but certainly
increases the viscosity.

The different reaction of fluids to deformative stresses may be due

to the fact that the resistance offered by viscosity and strength is so

small that no compression takes place at all. The elastic properties
that direct the force in all other cases are thus left out.

The above mentioned classes can now be subdivided viz:

1 a. brittle solid matter fragile: low viscosity < some strength
b. brittle solid matter strong: low viscosity < great strength

2 a. ductile solid matter e.g. metals: high viscosity ± = great strength
b. plastic matter hard e.g. pitch: high viscosity > low strength

c. plastic matter soft e.g. butter: low viscosity > some strength

3 fluids: strength + viscosity less than compressibility.

With high confining pressures groups (1) a and b can be brought into

the range of groups (2) b and a.

Thus the relation viscosity versus strength determines whether the

material will rupture or be plastically deformed, but all matter belonging
to the groups (1) and (2) will start their deformation by laws of elas-

ticity, as all have an active rigidity.
Jeffreys recently') arrived at a similar conclusion. We quote

from p. 21:

„These considerations suggest that when a solid is undergoing flow

we must regard the distortional stress as composed of two parts, one

proportional to the strain and resisted by rigidity, the other proportional
to the rate of increase of strain and resisted by viscosity".

A theoretical study of the phenomena of plastic deformation we find

in the report on viscosity and plasticity by J. M. Burgers 2

). Plasticity
is regarded as relaxation of elastic stresses. An elastically deformed body
contains potential energy, stored in the molecular lattice. We quote from

p. 15
... „A molecule, which thus possesses a certain energy with respect

') H. Jeffreys, Earthquakes unci mountains, London 1935.

2 ) First report on viscosity and plasticity, Chapter I, by J. M. Buk<iers, Verli.

Kon. Ac. van Wet. Amsterdam 1935.
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to its neighbours, may be thrown out of its position into one of smaller

potential energy, the lost potential energy will be dissipated into heat.

If such a change of position, combined with loss of potential energy,

occurs repeatedly, the potential energy of the whole system will decrease.

This will bring about a decrease of the internal stresses of the system,
in other words the elastic stresses in the body relax." And from p. 16

... „We may further imagine a case in which the exterior forces acting

upon the body are such ,that equilibrium requires a constant value of

elastic stresses. Then we shall obtain that every time the interior stresses

have relaxed under the influence of thermal agitation, the equilibrium is

disturbed; consequently the exterior forces will cause an increase of the

deformation to such a degree that the interior stresses shall have regained
their original value, so that the equilibrium will be restored. As, how-

ever, the relaxation process goes on permanently, this phenomenon will

continuously repeat itself and thus we arrive at a state of continuously

increasing deformation, or a state of flow under action of constant

exterior forces."

These inferences explain the simultaneous action of elastic and shear

stresses observed in Griggs' experiments. The value for a coefficient of

viscosity deduced from the above mentioned theory is dependent on the

thermal activity, i.e. the temperature.

The retardation of elastic deformation must be the result of an

internal friction, not to be confused with the flow viscosity. This pro-

perty is called the „firmo-viscosity". The property of solids to maintain

this elastic habit during plastic flow is called the „elastico-viscosity".

Finally the strength is-regarded as a yield value of the elastico-viscosity.

§ 4. So far we have only considered the influence of increasing

confining pressure. An increase of temperature, such as must he assumed

in deeper layers of the earth's crust has a more widespread influence.

Both viscosity and strength are lowered by rising temperature, but not

necessarily at the same rate.

When the material is plastic under certain temperature, and the

rise of temperature lowers the viscosity at a greater rate than the

strength, the same material might rupture under the new conditions

because the viscosity resistance has fallen below the strength. Thus a

material belonging to group 2 c may be transferred to group 1 a. This

is probably what happened in the experiments by Kuenten j

) when in his

attempts to imitate the buckling of the earth's crust, the raising of the

temperature had the unexpected result that insead of the elegant curves

of the harder material, often thrust planes were formed in the softened

material.

A further rise of temperature must finally result in the melting of

the material, the total loss of strength.

§ 5. As we have seen in paragraph 2 and 3, the shearing friction

is dependent on the pressure on the shearing plane. This pressure is

the sum of the confining pressure and the component of the distortional

') Ph. H. Kuenen, Leidsche Geol. Med. VIII, p. 169—214, 1936, fig. 12.
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stress perpendicular to the shearing plane. Consequently the shearing
frietion is smallest for all planes parallel to the elastic stress, and great-

est on planes perpendicular to that stress, both principal planes of stress.

In other words shearing would prefer planes parallel to the elastic

stress direction if means to effect shortening with such shearing were

possible. If the length of the beam is large compared to its thickness

these means are found by the formation of a fold. The shearing takes

place parallel to the upper and lower surface, i.e. the original direction

of the elastic stresses. How the shearing stresses are formed is not easy

to determine. Their direction and values must be found by a theoretical

treatment of the problem of plastic deformations. The outcome of this

theory will probably be that concentric folding approximately or traly
is the geometrical result of the orientation of the distortional stresses.

Thus the difference between plastic deformation of fluids and solids

is that the distortion of an element in the fluid is independent of its

situation relative to the whole body, whereas in solids the situation of

that element is all important, as the distortional stress is different in

size and direction for every point. The theory of plastic deformation

must determine this size and orientation for every point at any moment.

In a former paper
1) it has been shown that the shear of concentric

folding is restricted to certain parts of the fold, and the amount of shear

depends on the dip of the strata at a certain point.
Such plastic buckling is only possible if the length of the beam

parallel to the stress is large compared to the thickness. This condition

is fulfilled in the case of the earth's crust, but not in Griggs' experi-

ments. It is not necessary that the arching starts by elastic buckling,

any surface irregularity will suffice to direct the distortional stresses.

Vening Meinesz 2) determines the buckling limit and calculates a

stress of 5.25 X 104

kg/cm2

necessary to effect elastic buckling 3 ) He

agrees that obviously this is more than the crust can stand, and con-

cludes that the crust must be layered to be able to buckle. All his cal-

culations are based however on elastic buckling. The crust will give

way long before that calculated stress is reached, but not by rupture

or by elastic buckling of smaller units, but by plastic flow, in the way

described above. The maximum stress needed to effect plastic flow will

not be appreciably more than the strength of the material as tested

in laboratory conditions, and even may be less 4).

*) L. U. de Sitter, Leidsche Gcol. Med. Vol. VIII, p. 161—168, 1936.

-) Vening 'Meinesz, Gravity expeditions at Sea, Vol. II, 1934.

3) The same equation for the buckling limit has been used by Jeffreys „The

Earth", 2nd edit., 1929, p. 288. From the eq. Jeffreys concludes that evidently

„The crust can transmit the stresses perfectly for
any distance, and failure takes

place where the stress difference first reaches the strength of the rocks". The only
conclusion the equation justifies.

4) The strengt]) as determined in the laboratory has a rather arbitrary value.

We measure the P of Hopkins eq., whereas the e represents the proper strength of

the material. In a fold the position of the planes of shear varies considerably, and

the deduction of the distortional stresses from the tangential pressure in such com-

plicated conditions can not be predicted so easily. As plastic flow does not take

place at tlir same moment throughout the whole body, a concentration of distortional

stress at one point may lead to a more favorable relation between e and P as in

Hopkins eq., where e is max. = % P.



8

From the same set of equations Vening Meinesz deduces provisionally
the wave length and even the shape of the arcs to be expected in the

Earth's crust. As his equations are based however on elastic deformations

it seems highly improbable that they can be applied to this problem of

plastic deformations of the crust.

It may be possible that the shape and size of a fold is indeed

dependent on the elastic properties of the body, because plastic flow

of a non Newtonian liquid (a liquid where the ratio shearing force-

rate of strain is not linear) retains its elastic habit, but until the theory
of plasticity has reached a stage where we can predict the orientation

and the value of the shearing forces at any point of the deformed

body and at any time, such mathematical deductions as those of Venim;

Meinesz are not warranted.

§ 6. The strength of rocks as determined in the laboratory varies

from 7 to 40 kg/mm2 l ). Granite is taken as having a strength of

8 kg/mm
2

by Jeffreys. As the confining pressure increases with depth
in the Earth's crust at the rate of 1 atm. in 4 metres, the confining

pressure at 3.2 km depth would be sufficient to allow plastic folding
of granite. Sedimentary rocks, specially those of younger age, have much

smaller strength. The plastic state will be reached for those rocks even

at less than one km depth. Those shallow depths must not surprise us,

as we know that sediments, which never have been buried at greater

depths than y2 km, have undergone perfect plastic deformation in folds.

A sedimentary series of rocks has a natural tendency to increase

in strength downwards, due to compaction and cementation, but as the

confining pressure also increases downwards, the whole series can behave

as a plastic solid. The strength of the whole heterogeneous series is

determined by the strength of the constituents. As Jeffreys (The Earth,
footnote p. 181) explains, the strength of the heterogeneous series will

be larger than its weakest constituent, but smaller than its strongest
member. In assuming that the confining pressure everywhere surpasses

the strength of every member of the series, a reasonable assumption for

most sedimentary series 2), the yield point of the sedimentary series is

determined by its composite strength. Theoretically we may thus regard
the whole series as a homogeneous body having a certain stress-limit

equal to this composite strength. This explains why in simple structures,

where anticlines and synclines remain seperate tectonic units, the beha-

viour of widely different rocks is the same. In general a cross section

through a simple anticline does not show any difference in tectonics

for limestones, shales, sandstones or coallayers. All conform to the same

geometrical shape, whatever their specific physical properties.
Besides the strength of the material, which thus determines the yield

point of the whole series, we have to consider the viscosity. During

plastic deformation the strength is no longer of importance, the rate of

strain is determined by the viscosity. Perhaps it is this „elastico-viscosity"

') Landoi/t Börnsteik, Physikalische tabellen.
2) Only such formations as very young reef limestones will possibly be exceptions

to this assumption.
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that influences the size and shape of the fold. Unfortunately this pro-

perty of solids has received very little attention. Only experiments such

as those of Griggs and Bridgman 1 ), executed under high confining pres-

sure, can help us to elucidate this problem.
The behaviour of the material in the earth's crust under tangential

pressure is influenced by the increasing temperature and confining

pressure on the strength and on the viscosity of the rocks. As we have

seen the increase of the confining pressure has no or very little in-

fluence on the strength. The strength will remain unimpaired until

a depth is reached where a beginning of melting sets in. The thickness

of this layer of unimpaired strength must be at least 40 km, otherwise

the crust would not be able to carry the enormous weight of the large

mountain systems
2

). The viscosity is raised by the increasing confining

pressure but decreased by the increase of temperature. The results of

this conflict can not be measured, but it is probable that below the

upper layer of 40 km thickness we shall find a zone, where the strength
lies considerably below the viscosity. However, we can imagine that the

increasing temperature has the power to decrease the viscosity to such

an extent that at some depth the viscosity falls below the little strength
the material still possesses. If that were true we should get below that

second zone of flow a zone of fracture, comparable to the conditions

realized in Ktjentsn's experiments mentioned in § 4. Such a zone of

fracture at great depth can perhaps be identified as the seet of the

deep focus earthquakes 3).
Such conjectures are however of little value as long as the combined

influence of pressure and temperature on viscosity and strength and

rigidity is so little known. A first step to a better foundation of a

theory of buckling of the earth's crust could be, failing a good theo-

retical basis, to interpolate these influences from laboratory experiments.

PART II.

Outline of theory of plastic deformation in folds.

§ 1. Every theory on plastic deformation of the Earth's crust,
either seeing it as a unit, or treating the more limited subject of sedi-

mentary folds, must consider the principles of plasticity. However, an

exact physical theory on plastic deformation, which can be applied to

the formation of folds is lacking. Hence the curious fact that authors,

geological or geophysical, who realize the necessity of a mathematical-

') GRIT'S, loc. cit.

BrHXtMAN, Shearing phenomena at, high pressure etc. Journ. Geo]., Vol.

XLIV, 1936.

2) Jeffreys, The, Earth, see. ed., 1929.
3) This suggestion can be compared to that of Gutenberg, „Structure of the

Earth's crust", Bull. Geo]. :Soc. Am., Vol. +7, p. lfSOfl. Gutenberg assumes that the

viscosity at that depth is large enough to allow an accumulation of stress, which

suddenly released causes the earthquake.
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physical basis for any theoretical tectonic theory, have to stop their

calculations when the plastic deformations enter their discussions. As

long as the deformative forces stay below the elasticity-limit (stress-limit,

strength) we can sail on the compass of the theory of elasticity, but as

soon as permanent deformations occur, this theory leaves us stranded

on the shore of unexplored territory.
In the next paragraphs we will try to deduct the principle of con-

centric folding from the fundamental properties of solids set forth in

the first part of this paper.

Our belief that eoncentric folding is the leading principle of folding

tectonics is founded on the observation of folds in nature, and not on

the theoretical foundations we trie to give to our theory.
It is a well known fact that anticlines become steeper the further

we penetrate down in the core. Complications in the shape of faults

and thrusts will be found in the core and not far out in the flanks.

Obviously this phenomenon is incompatible with a mode of deformation

hereafter called „simple deformation". A simple thickening of the strata

will always tend to flatten the structure downwards (compare Fig. 7).
The origin of the complications of the core of an anticline must be

sought in the fact that the strata adhere as long as possible to the prin-

ciple of concentric folding. As soon as the curvature of the upper layers

can not be followed any longer by the lower strata without loss of

volume, the latter have to adopt themselves to the space left in some

other way.

Thus we have two important observations on which the concentric

folding principle is based. In the first place the direct observation of

concentric folding in folds, e.g. in oil field anticlines, in the simple
Jura folds, and in experimental work; and in the second place the

fact that all anticlines tend to get steeper and more complicated down-

wards and inwards.

Concentric folding as such has been generally recognised as a

leading principle. The way of section construction of Busk 1 ) and other

methods used by oil companies are founded on this principle.
In the core of the anticline, however, they all make a serious error:

they disregard the necessity of retention of volume for every layer. As

soon as a centre is cut out in the construction of Btusk, the volume of

the layer constructed below this centre is less than that of the higher

layers. This error of the construction method results in a flattening
of the structure downwards, a result contradictory to natural circum-

stances. In nature the retention of volume is attained by the develop-
ment of a thrustplane or by a change in the direction of the minute

shearingplanes.
I am convinced that if we knew how to apply the laws of con-

centric folding and retention of volume in the proper way we should

be able to explain many important features of folding tectonics; e.g. the

size of folds, the asymmetry of anticlines, the development of thrust-

planes, their position and shape, attenuation of steep flanks and perhaps

') H. G. Busk, „Earth flexures", Cambridge 1929.
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even the general distribution of folds in a geosynclinal basin. There

is no doubt, however, that we ought to understand in the first place

the fundamental principles of these laws before we can apply them.

Although I realize that a complete mathematical theory is necessary,

being unable to supply one myself, I will endeavour to set forth some

fundamentals in plain but perhaps inadequate language. I sincerely hope
that my statements will induce abler men to put the whole subject on

a stabler footing. The problem is fascinating enough, but seems to offer

great mathematical difficulties.

§ 2. Deformation of liquids and solids.

Deformation of a solid body under deformative stress can be divided

in three successive stages:

(1) Compression; particals of the material are pressed together, resiüting
in a decrease of volume, both of the total volume and of the volume

of a unit element.

(2) Elastic deformation; total volume unchanged, but volume of unit

elements is altered.

(3) Plastic deformation; no change in volume, even in that of small

elements.

The phases (1) and (2) need not be subsequent phases but may overlap

one another, and are closely connected.

The limit between (2) and (3) is called the elasticity-limit or stress

limit. Beyond such stress permanent deformations may take place. In

ordinary hard solids (stones etc.) the material will fracture when the

stress limit has been passed, but when the same material is put under

high confining pressure plastic deformation can be effected without

rupture.

Deformation of an ordinary liquid (water) does not pass the succes-

sive phases of the solids but is limited to the plastic phase only, com-

pressibility being very low.

However there is a great fundamental difference between the mecha-

nism of plastic deformation of solids and liquids, which is clearly
demonstrated by the shape of the deformed body (Fig. 4).

Fig. 4.

Types of deformation.

A = liquid, with raised surface, B = plastic solid, folded.
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The mechanics of fig. 4a we will call simple deformation, these of

fig 4b shearing (see also fig. 5) l ).

The resistance which the material offers to the deformative stress

is the internal friction or viscosity. In other words in liquids the

resistance is small, and in solids the high viscosity is supported by the

strength, the latter constituting a yield value (threshold limit) to the

whole process.

The difference in reaction of liquids and solids in plastic condition

must be explained by this difference in reaction of the medium to

deformative stresses.

Simple deformation can be described as the deformation of a square

(unit element) to a rectangle. (Fig. 5a).
Shear can be described as the deformation of a square to a paral-

lellogram. (Pig. 5b).

Obviously, both ways of deformation can be represented by a simple

elongation in one direction, as illustrated by the change of shape of the

circle to the ellips. However, the difference between 5a and 5b is the

mechanism of the deformation. During deformation in the case of 5a

the distance of particles relative to one another is always changing,
whereas in 5b the distance of particles parallel to the shearing plane
remains unaltered. The fundamental difference between 5a and 5b is

that the particles in a liquid have no fixed position relative to one

another, no definite shearing planes can or will be formed. In a solid

the position of one particle to the next can not be arbitrarily changed,

to a definite stress direction belong definite shearing planes.
The deformation of liquids of fig. 4a is composed of those of fig. 5a,

and the deformation of solids as in fig. 4b is composed of unit elements

deformed as in fig. 5b (see fig. 6).
Deformation is then effected along definite shearing planes. An-

other function of the strength as threshold value is the preference for

increasing development of one fold instead of general deformation of

the whole body, as happens in fluids. Somehow it is easier to continue

folding where it once started until some other agent, probably gravity,

') To effect the deformation of fig. 4b the length of the beam must be large
compared to its thickness; if not the shearing will result in a change of shape
similar to that of fig. 4a, but different in internal mechanism. The shearing planes
are then no longer strictly parallel.

Fig. 5.

Deformation of the unit element.

A = liquid, simple deformation, B = solid, simple shear.
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puts an end to it. In other words, the property of strength determines

the kind of deformation. In the case of a viscous liquid we reach an

intermediate stage. The resistance of the viscosity diminishes with the

rate of deformation, hence for very low stresses, the resistance is very

low and pure liquid deformation will result. The increase of viscosity
resistance with increase of stress, however, will result in a kind of

strength for high differential stresses. This apparent strength has the

same influence as the proper strength in so far as it constitutes a thres-

hold value in restricting as much as possible the deformation to one

fold, but does not necessitate definite shearing planes. The result will

be a fold formed by simple deformation, where we are not able to

designate everywhere definite parallel shearing planes (fig. 6) 1 ).

The volume of the unit elements is constant, which together with the

decrease of dip downwards determines the pattern. In the lower layers

we find, predominating simple deformation, in the upper layers simple
shear. The combination of fluid and solid properties, cf. the apparent

*) The pattern of the unit elements was sugegsted by one of a series of experi-
ments by Ph. Kuenen, which have not been published yet.

Fig. 6.

Concentric fold, unit elements deformed by simple shear parallel to bedding planes.

Fig. 7.

Composite fold, Unit clements deformed by shear and simple deformation
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strength of a viscous fluid under excessive deformative stress, is illu-

strated by the deformation of the unit elements. The quicker we try

to deform a viscous material as pitch the more it reacts as a solid.

With a blow of a hammer we can break the fluid material. This is

the same phenomenon which according to Gutknbkrg 1 ) accounts for deep
focus Earthquakes.

Material having a definite strength will be permanently deformed

by means of definite shearing planes. The arrangement of the planes

may result in a change of total shape similar to that of fig. 4a, as for

instance in Griggs' experiments, but the deformation of the unit element

remains that of the type of fig. 4b.

Possibly a material having a small strength put under high dis-

tortional stress will act as a highly viscous liquid and show the inter-

mediate type of deformation of fig. 7.

But in geological processes the strength of the material is very

high. The distortional stress will slowly increase until the stress limit

has been reached. As soon as this limit has been passed plastic defor-

mation sets in, absorbing the original very slow rate of increase of

stress. Hence, in considering deformation of folds of the Earth's crust

we are not concerned with distortional stresses considerably exceeding
the stress limit, and the intermediate kind of deformation may be left

out of the discussion of the fundamental principles.

§ 3. In the foregoing paragraph we have established the fact

that the deformation of the unit element of solids must be effected by

simple shear.

The arrangements of these parallelograms, the deformed squares,

will determine the outward shape of the whole fold (fig. 6). The con-

fining pressure of the surrounding rock will prevent in the earth's

crust the formation of voids. The compressibility of the solid material

J ) GuTENBEKfi structure of the Earths crust", Bull. Geol. Soc. Am., Vol.

47, 1936.

Fig. 3.

Parallelism and curvature of shearing planes.
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(i.e. the loss of volume) can be disregarded, because (1) the first stage

of deformation process has already compressed the material, (2) the

compressibility is very small from the beginning and accordingly cannot

play any important part in the geometry of the final fold 1).
These considerations lead to the general rule that in any solid the

shearing planes formed by distortional stress will tend to as much paral-

lelism as possible.
If we consider a unit element surrounded by similar elements, any

deviation of this rule in a direction perpendicular to the shearing

planes of the central unit (fig. 8) would either result in compression

or tension. In the direction of the shearing planes of the central unit

the parallelism need not be retained, there are no objections to curvature

of the shearing planes.
The rule of the parallelism is a direct result of the property called

strength. If this property is missing, the rule is no' longer applicable.
The structure of fig. 7, a combination of simple deformation and shear,

compared with the pure shear of fig. 4b and 6 illustrates this rule.

§ 4. The phenomenon of shear is generally viewed from the equation
of Coulomb-Hopkins, or its modifications. The fold of Fig. 9 shows how

a fold could develop along such shearing planes.

The shearing planes are parallel, and neither the total volume nor

the volume of a unit element has changed.
When D is the total shear, that it to say the sum of the shear

of all unit elements, and t the thickness, s the shortening and a the

angle of the shearplane, then

D ■=-!*-
sin. 2 a

or a maximum of shortening with a minimum of shear has been reached

with a a
of 45°.

') Compaction of shales by folding stresses may influence the shape of the fold.

Fig. 9.

Oblique shearing (flexure).
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However this it not the way sedimentary rocks are folded in general,
but it is identical with a flexure, which any time may be replaced

by a fault.

Concentric folding, which seems to be the leading principle in the

mechanism of folding is effected in a different way. In the latter case

the shear planes are parallel to the surface as in fig. 10 (and 6).

The conditions of parallelism of the shearing planes and maintenance

of volume are fulfilled. The total amount of shearing, I), is again the

sum of the shearing of all unit elements. If we conceive the whole

curve of the fold, L, as a series of tangential circle arcs, 1
1;

1
2

etc. with

angles a
u

a
2 etc., then for a layer of the unit thickness.

D
one horizon

= \ (lj a, + 1
2

«
2
+ etc.) where lj + 1

2
+ etc. = L.

If pure parallelism has been maintained all horizons must be concentric

circles and the lengths L are equal for every horizons, thus

Dtotal
series

■= it (lj at
+ Lj a2

+ etc.)

In the simplest case, when the curve consists of two circle arcs with

contrary curvatures and maximum dip — /?

D =

§ 5. The way of shearing of fig. 9 is derived from the theory of

fracturing. Instead of one shearing plane along which the rupture occurs,

we have imagined a multitude of identical planes with small movements.

Moreover I cannot find any reason to explain the supposed dispersion
of the total movement on many planes. Also a serious objection against
this kind of folding can be raised, which at the same time explains the

necessity of the concentric folding principle. We know that the elastic

property is not lost by passing into the plastic stage.

Fig. 10.

Concentric folding.
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The orientation of the stress in the whole body must be parallel

to the surface. Shearing planes crossing the stress direction would

immediately loosen the elastic tension. This sudden release of tension

is identical with the momentous and sudden character of the fracturing

phenomennon.
In other words, it seems logical to ascribe the principle of concen-

tric folding to the necessity of forming shearing planes parallel to

the direction of elastic stress.

In the first part of this paper (I, § 3), we quoted Burgers, ex-

plaining plastic deformation as a relaxation of elastic stresses. Hence

logically relaxation can only take place parallel to these stresses. The

property of retaining elastic tension is the same as the property called

rigidity by Jeffreys.

We have learned thus to recognise three properties of solids (1)

the strength (2) the elastico-viscosity (3) the rigidity and the parts they

play in a deformation of a solid. The preference for folding to faulting
shown by rocks under sufficient confining pressure must then be ascribed

to the fact that under those conditions of strength, viscosity and rigidity,
less deformative stress is needed for concentric shearing than for faulting

(or flexuring), because the same amount of shear (1) in the equation)
is followed by a larger strain percentage in case of faulting than in

case of concentric shearing.

Apparently it is not the profitable effect (amount of shear) that

determines the way of deformation, but the actual Stresslimit, and the

latter apparently is lower for concentric shearing than for faulting. The

proper definitions of these properties (strength, viscosity, rigidity) are

difficult to word and the theory of plastic deformation cannot be started

or completed unless the mutual relations of these characteristics have

been properly understood. In the absence of this, this outline will remain

a superficies without contents.

Leiden, Mei 1937.


