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I. THEORY.

In two previous publications (bibl. 1 and 2) I have brought the

formation of calderas into relation with the gas phase, observed by
Perret during the eruption of Vesuvius in 1906 (bibl. 3). In these

papers I arrived at the conclusion that during the gas phase a cylinder

is cored out, and that this may be the cause of caldera formation. In

the first paper the subject was treated geometrically, while in the second

calculations were made of a particular case (the Krakatoa eruption of

1883) to see if they would bear out this theory. This caldera-formation,

however, is not a typical case, as there must previously have been an

older Krakatoa-caldera, and in Aug. 1883 it was not a large portion of

the volcanic cone that disappeared, but only an island which projected

little above sealevel; the northern part of the ancient island Rakata,
with the volcanoes Perboewatan and Danan. How a caldera might be

formed from a cored-out cylinder I have tried to explain in two different

ways. In the case of the Tengger-caldera I assumed, in analogy with

what happened in Vesuvius after 1906 (bibl. 3 and 4) that the upper-

most part of the cylinder was transformed into a funnel-shape by

crumbling away of the walls, and that rising lava, as in Vesuvius

1913—1926, formed a flat bottom which continually reached higher levels.

This explanation does not apply to the caldera of Krakatoa, as after

the great eruption of Aug. 26 th to 28th 1883 no further signs of eruption
were observed, until in Dec. 1927 a new phase began in this famous
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Goldreich (bibl. 5) gives 45° as the angle of inclination of the slides

in loose, detrital formations, and a. larger angle, as great as 85° for more

compact formations (fig. 1).

If we imagine a sufficiently large disc-shaped mass to be removed

from the coal seam, the sliding plane will become funnel-shaped. The

applications of this phenomenon to the caldera-formation brought me to

the following hypothesis: if not only the cylindrical disc in the depth
is removed, but a complete cylinder from the bottom to the surface, a

forteriori a funnel-shaped sliding plane
1

) will form, at least if the radius

of the eruption cylinder is not too small. The collapsed material will

then presumably have a shallow basin-shaped surface. This basin shape

might be transformed into a more or less horizontal plane by lava-streams

or volcanic ashes or both.

In this article the line of reasoning is resumed, and the last men-

tioned views on caldera formation from cored-out cylinders are treated

as generally as possible. Prom this, however, it must not be concluded

that the first point of view is entirely abandoned, as narrow eruption

cylinders will not subside tso easily, and the new theory is especially

meant for larger eruption cylinders.
If this theory is applied to the normal volcanic cone we arrive at

the following results (see fig. 2).
As generating line of the external slope of the volcanic cone a

straight line is taken, forming an angle ß with the horizontal. The

angle of the slide, a,
is also measured with regard to a horizontal line.

When the cylinder (AA'B'B) is expelled from the volcano, the volume

') The term "sliding plane" is used here for the sake of simplicity. It first

forms as a funnel shaped fault along which subsequently sliding takes place.

Fig. 1.

Subsidences due to coalmining,according to A. H. Goldreich (bibl. 5, p. 88, fig. 59).

volcano. In the case of Krakatoa in 1883, therefore, I thought it justi-
fiable to apply the phenomena, known to occur in coal mining, of recent

subsidences which are caused by the working of coal seams lower down.
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within the surface of revolution (ABC) will collapse into the volume

(A A'DP). The contents of these two bodies must he equal.

Of a given caldera R the radius of the upper rim is known as well

as d the depth below the rim of the caldera bottom, while ß and a may

vary within certain limits and can be taken as the known variables. The

depth E K =h, of the former eruption cylinder, after the collapse, is

a function of a, of the radius of the eruption cylinder x, and in a lesser

degree of ß also.

In this paper the general equation will be deduced from which x

can be found and afterwards h,. Then a particular case will be treated,
and finally a general solution will be given, to which theoretical con-

siderations will be attached.

Of course in reality neither A C not B C will be straight lines

and in the calculations, for the sake of simplification, in both cases a

mean slope has been taken, while D F has also been taken as straight.

Fig. 2.

Diagram of the formation of a caldera from an eruption cylinder by a funnelshaped
slide. R = 1000, d = 50, α = 70°, ß = 15°, x = 246, h3 = 2021 (See table B

5).
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II. CALCULATION.

1. Deduction of the general equation.

Known: R, d, ß and a.

Unknown: x, when:

Contents (AB C) = Contents (AKEF)

h., = (R — x) tan ß

h, = (R — x) tan x

r = R —

tan a.

h
3
=tH( R -ti)- x S w

Cont. (h t
+ h

2 ) (R 2 +Rx + x 2) -jr (h4 + h
2 ) x 2 =

=\ tt (tan ß + tan *) (R —x ) (R 2 +Rx - 2 x 2) (II).

Cont. (A KEF) = J %h
3 (r2 +rx + x 2) =

ó

= I-srtanajlß ——— )* x 3! (III).
3 ( \ tan a, ) ) '

Fig. 3.

The measurements used in the calculation. The drawing was made with:

R = 40, d = 3, α = 63°26’, (tan α = 2), ß = 26°34’ (tan ß = ½).
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(II) = (III) therefore:

TT (tan ß 4- tan *) (R - x) (R2
+ R x — 2 x

2
) =

=
K ir tan x \ (R ) — X

8
>.

3 (V tan x
> )

(2 tan jS + 3 tan x) x
3

—
3 (tan ß + tan x) Rx 2

+

/ d \ 3

4- (tan ß + tan x) R 3
— tan x R

—
=0 (IV).

V tan a, i

2. Example: The Tengger Caldera.

The Sandsea is here taken, whereby the straight boundery, the

Tjemora Lawang, is left out of consideration; R = 4000 m., d= 300 m.

What the mean angle of incline ß is for the part of the volcanic

cone that has disappeared, could only he approximated by a special in-

vestigation. The larger the angle is, the larger the volume of the eruption

cylinder must be under otherwise equal conditions of the d and R. About

25° would be the maximum that can be assumed for the mean angle
of incline. To simplify the calculations tan ß = y2

is taken ß =26°34'

therefore. For a was taken 45°, 66°19', 63°25', 75°58'' and 84°17'

successively, sothat tan« becomes successively: 1, 3/
2 ,

2, 4, 10.

The general equation (IV) then gives the following five equations,

together with which the approximated roots are listed, everything being

expressed in hectometers.

These five groups of three roots are graphically represented in fig 4.-

The negative and the smallest positive root approach zero, which is reached

at a= 90°. The greatest positive root lies close to R, the value of 40

being reached at a=90°.

TABEL A (hectometers).

ß tan ß oc tan x Equation.

Approximate roots.

h
3 ( 2 )

x(i) *(.) x(
3
)

26°34' Vi 45° 1 8x 8
--

-
360x2 +90694=0 -13.9 -4- 22.4 + 36.5 14.6

» 11
5619' »/. llx3

- 480x 2+91384=0 - 12.2 + 18 + 37.8 30.00

Î) 11
63°26' 2 14x8

- 600x2 +91734=0 - 11.0 + 15.5 + 38.4 46.00

ÏÎ 11
75°58' 4 26x' - 1080x2+ 92163 =0

— 8.4 + 10.7 + 39.2 113.80

n ii
84°17' 10 62x 8

- 2520x 2+92585 =0 ■ 5.7 + 6.6 + 39.7 331.00
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The negative root lias no real significance for our problem, nor has

the largest positive root any volcaiiological importance for our problem,

as the diameter of the eruption cylinder would then he almost equal to

that of the caldera and at the same time the depth of the eruption

cylinder would be very slight (fig. 5).

It is only the middle root that is of importance, that is the smallest

of the two positive roots.

Fig. 4.

Graph of the three roots of the equations of table A.



Graph of the equation y = 14 x³ — 600 x² + 91734.

This equation holds for R = 40, d = 3, α = 63°26’ (tan α = 2) ,ß = 26°34’ (tan ß = ½).

The three roots for x lie on the point of section of the curve with the x-axis (y = 0).

In fig. 6 the equation for the Tengger caldera for /? =26°34' and

a
= 63°26': y = 14 x

3
—

600 x
2 + 91734 is represented graphically.

This shows the general course of the functions here dealt with.

Fig. 5.

Representation of an application of the two positive roots of the equation.
14x³— 600x²+ 91734 = 0. R = 40, d = 3, α = 63°26’ (tan α = 2) , ß = 26°34’ ( tan ß = 4).

The two positive values of x are 15.5 and 38.4, the values of h
3 belonging to these

are 46 and 0.2.

Fig. 6.

190
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3. General solution.

The solution for the smallest positive root that here follows I owe

to Prof. dr. W. de Sitter, who also had the accompanying 10 tables

calculated for me.

As variable knowns besides
a

and ß we have It and d. It is more

convenient to take S ( = -=r- ) a.s known instead of R and d.

By the measurements of a few calderas it was found that 8 will

usually lie between 0.01 and 0.10.

The following caldera's were consulted:

a. Tengger caldera (Java) (bibl. 1). The "Zandzeo", leaving out of consideration

the straight boundery of the Tjemoro Lawang.

R = 4000 M., d = 300 M.. therefore 0.075.
4000

h. Batoer Caldera I (Bali) (bibl. 6 and 7). Kemmerunc; (bibl. 6, atlas, plates V

and VI) assumes that there must have been an earlier large Batoer caldera, here

called I for which I have taken R = 6000 M. and d = 250 M. 3 = =
0^42

6000 '

o. Batoer caldera II (bibl. b' and 7). The second Batoer caldera is bounded by the

terrace of Kintamani. Following Stehns map (bibl. 7) for the diameter of

this caldera and the same map for the difference in height between caldera rim

Sflfl
and caldera bottom, I take R = 3600, d =

300 therefore 3 = = 0.083.
3600

d. Idjen caldera 's (Java) (bibl. 8 and 9). Kemmerling has discovered a terrace

on the inner slope of the Goenoeng Kendeng (bibl. 8, p. 57) from which he

concludes that in this caldera also, at least two collapses have taken place. More-

over he is of opinion that the elliptic form of this caldera, with a long axis

of 20 k.m. from E. to W. and a short axis of 16 k.m. from N to S., indicates

a shifting of the volcanic axis. He considers the Idjen to be a composite caldera.

For the two Kendeng caldera 's Kemmerling estimates the amount of the two

collapses (bibl. 8, p. 140) at 300 m. and 500 m.

Hero I have taken for the first caldera formation E = 6000 m., d = 300 and

d = 500 m. for the second.

For the first caldera we find S = = 0.037.

8000

„ „
second

„ „ „
S = = 0.063.

If we divide the general equation (IV) :

(3 tan x + 2 tan ß) x
3

—
3 (tan x -+ tan ß) Rx 2 4- (tan x + tan ß) R3

—

t d \ 3

— tan a, R - = 0.
\ tan x'

by R3 tan a, it is changed to:



192

(»-«S-Äi)- »f1 +££Xi)'+(> +S5) -

(-^r—»■

If we now put:

x = e R, K = 8 cot a, y = tan ß cot a and d=8K.

then the equation:

(3 + 2 7 ) £3 -3(l + y)t.2 +(l+ y )-'(&IZ-|38^Hf=0.
is arrived at,

Z

(3 + 2y)«;
3 -3(l+y) £*+l + y -(l-K)

3 =0 (V).

If we now put:

A = 1 — (1 — K )3
= 3 K (1 £ k -f I K

2).

We arrive at the equation:

A+ (l_3 £
2 + 2

£
3)y —3 (e 2

— e
a)=0 (VI).

This equation is linear in
y

and X for given s( =-=--1.

By letting e vary between 0 — 0.80 the equation in A and y is ex-

pressed in straight lines. Prom the nomogram thus found with straight

lines, on the other hand
e can be read for different y's and A's.

By letting a
and ß increase by 5° different y's occur, for one par-

ticular 8 different k's are then found, and therefore A's also.

After having found for 10 different 8's (0.01, 0.02, 0.03

0.10), 9 different «'s (45°, 50°, 55° 85°) and 7 different jS's

h3

(0°, 5°, 10° -30°), the 630 corresponding values for
-g- were cal-

culated.

In (I) we found:

h
3
= tan*j(R-

t

-A
6
)-xj.

If. we substitute the values found above for d = 8R and x = e R the

following equation is arrived at:

h, = tan # ( R — s R 1
6 V tan« '

1)., = R tan x (1 — s) — R5

1

therefore: = tan a (1 - e) — I (VII).
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The ten tables for the different 8's follow here. (Tables B
1—B

10).
If we now wish to apply the reasoning of the new theory to any

particular caldera, to see what conclusions we are brought to, R and d

must first be ascertained from the topographical map, from which 8 —

p

follows and so shows which of the ten tables must be used.

Corresponding to the tables graphs have been made (fig. 7—16)

x h
from which and can be read for all a's between 45° and 85°

and all ß's between 0° and 30°.

Values of ß.

From the incline of the remaining foot of a volcano that has been

changed into a caldera by collapsing, a mean angle of incline ß can

be deduced by comparison with the inclination of large volcanic cones

that have not been attacked by caldera formation. All /S's that belong

to a particular angle of a lie upon a straight line in the graphs. For

each angle a there is therefore a straight line of /3-points; the /8-lines

x h
for all angles of a bisect eachother at the point 1 and -~ =— S just

above the 0-abscisse therefore, that lies at the top of the graphs. Prof.

W. v. d. Woude was so kind as to provide me with this important addition.

x h
It enables us to read for one interpolated «-value and

~- for the

different /3-values.

Values of α.

The choice between the different a's seems more difficult. In III

this point will be further considered. After a a- and a /?-value has been

x h
are read from the graphs or the tables. By multiplying

by the particular value for R which we have read from the map,

x (= the radius of the cored-out cylinder) and h
3

are found.
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TABLE B1. σ = 0.01.

|/3\
45° 50° 55° 60° 65° 70° 75° 80° 85°

0°

X

RT
0,103 0,094 0,085 0,078 0,071 0,063 0,055 0,045 0,032

R
0,887 1,074 1.297 1,587 1,983 2,564 3,51 5.40 11,05

5°

X

TT
0,214 0,193 0,178 0,160 0,143 0,126 0,111 0,086 0,062

h
8

R
0,776 0,952 1,164 1,445 1,828 2,391 3,31 5.17 10,71

10°

X

TT
0,282 0,258 0,235 0,216 0,191 0,168 0,144 0,114 0,080

h
3

R
0,708 0,874 1,082 1,348 1,725 2,276 3,18 5,01 10,51

15°

X

TT
0,348 0,309 0,282 0,258 0,232 0,206 0,174 0,142 0,100

h
3

R
0,642 0,812 1,015 1,275 1,637 2,171 3,07 4,85 10,28

20"

X

R
0,385 0,352 0,323 0,294 0,268 0,236 0,202 0,160 0,112

R
0,605 0,762 0,957 1,213 1,560 2,089 2,97 4,75 10,14

25°

X

TT
0,427 0,393 0,360 0,328 0,297 0,263 0,228 0,182 0,128

h
8

R
0,563 0,712 0,904 1,154 1,498 2,015 2,87 4,63 9,96

30°

X

~R
0,466 0,430 0.397 0,362 0,327 0,290 0,250 0,202 0,142

R
0,524 0,669 0,851 1,095 1,434 1,940 2,79 4,51 9,80



Fig. 7.

Graph of table B1.
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TABLE B
2

. σ = 0.02.

|0\
45° 50° 55° 60° 65' 70D

75° 80° 85°

0e

X

TT
0,153 0,140 0,126 0,112 0,100 0,087 0,073 0,058 0,046

h.,

R
0,827 1,003 1,228 1,518 1,910 2,488 3,44 5,32 10,88

5°

X

TT
0,244 0.222 0.201 0,184 0,160 0,141 0,120 0,098 0,070

R
0,736 0,906 1,121 1,393 1,782 2,340 3,27 5,09 10,61

10°

X

TT
0,307 0,281 0,254 0,232 0,204 0,180 0,152 0,127 0,086

R
0,673 0,837 1,045 1,310 1,687 2,233 3,15 4,93 10,42

15°

X

IT
0,359 0,329 0,300 0,277 0,243 0,213 0,181 0,149 0,103

K
R

0,621 0,780 0,980 1,232 1,604 2,142 3,04 4,81 10,23

20°

X

TT
0,405 0,371 0,339 0,309 0,275 0,244 0,208 0,168 0,116

R
0,575 0.730 0,924 1,177 1,535 2,057 2,94 4,70 10,08

25°

X

TT
0,446 0,411 0,374 0,342 0,306 0,271 0,231 0,189 0,131

R
0,534 0,682 0,874 1,120 1,469 1,983 2,86 4,58 9,91

30°

X

R"
0,484 0,446 0,410 0,374 0,335 0,297 0,256 0,209 0,146

h
8

R
0,496 0,640 0,823 1,064 1,406 1,911 2,77 4,46 9,74



Fig. 8.

Graph of table B2.
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σ = 0.03.TABLE B
3

.

\ X 45° 50° 55° 60° 65" 70° 75° 80° 85°

0°

X

TT
0,191 0,172 0,158 0,140 0,125 0,110 0,091 0,073 0,057

h,

R
0,779 0,957 1,172 1,460 1,847 2,415 3,36 5,23 10,75

5°

X

TT 0,270 0,246 0,225 0,200 0,179 0,158 0,133 0,104 0,078

h
3

R
0,700 0,869 1,077 1,356 1,731 2,283 3,20 5,05 10,51

10°

X

R
0,329 0,300 0,272 0,246 0,220 0,194 0,164 0,131 0,093

h
3

R
0,641 0,804 1,010 1,276 1,643 2,184 3,09 4,90 10,34

15°

X

~R
0,380 0,346 0,316 0,285 0,255 0,227 0,192 0,152 0,109

h
3

R 0,590 0,750 0,947 1,208 1,568 2,093 2,98 4,78 10,16

20°

X

TT
0,423 0,388 0,356 0,321 0,288 0,254 0,218 0,172 0,121

h
3

R
0,547 0,700 0,890 1,146 1,497 2,019 2,89 4,66 10,02

0,136

25°

X

TT
0,463 0,426 0,390 0,353 0,317 0,282 0,240 0,191

h
8

R 0,507 0,654 0,841 1,091 1,435 1,942 2,80 4,56 9,85

30°

X

TT 0,501 0,461 0,422 0,385 0,346 0,306 0,263 0,211 0,150

R
0,469 0,612 0,795 1,035 1,373 1,876 2,72 4,44 9,69



Fig. 9.

Graph of table B3.
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TABLE B
4. σ = 0.04.

1/3 \

45° 50° 55° 60° 65" 70° 75° 80° 85°

0°

X

TT
0,224 0,205 0,186 0,166 0,149 0,131 0,112 0,087 0,066

h
8

R
0,736 0,908 1,122 1,404

0,220

1,785 2,347 3,27 5,14 10,64

5°

X

IT
0,294 0,270 0,245 0,197 0,172 0,148 0,116 0,084

h,

R
0,666 0,830 1,038 1,311 1,682 2,235 3,14 4,97 10,43

10°

X

TT
0,352 0,321

'

0,291 0,262 0,234 0,206 0,176 0,141 0,098

h
3

R
0,608 0,769 0,972 1,238 1,603 2,141 3,03 4,83 10,27

15°

X

"R"
0,401 0,366 0,332 0,299 0,269 0,236 0,202 0,161 0,114

h
3

R
0,559 0,716 0,914 1,174

0,333

1,528 2,059 2,94 4,72 10,09

20°

X

RT
0,442 0,407 0,369 0,300 0,263 0,227 0,180 0,127

h
3

R

X

TT

0,518 0,667 0,861 1,115 1,462 1,985 2,84 4,61 9,94

25°

0,482 0,443 0,403. 0,366 0,329 0,290 0,248 0,199 0,141

K

R
0,478 0,624 0,813 1,058 1,399 1,910 2,76 4,50 9,78

30°

X

TT
0,518 0,478 0,437 0,397 0,357 0,315 0,271 0,218 0,153

h
3

R
0,442 0,582 0,764 1,004 1,339 1,842 2,68 4,39 9,64



Fig. 10.

Graph of table B 4 .
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σ = 0.05.TABLE B
5.

J0\
45° 50° 55c 60° 65° 70° 75° 80° 85°

0°

X

~R
0,252 0,229 0,208 0,189 0,166 0,146 0,120 0,099 0,065

R
0,698 0,869 1,081 1,355 1,739 2,296 3,23 5,06 10,64

5°

X

TT
0,321 0,291 0,262 0,237 0,209 0,183 0,154 0,127 0,085 .

R
0,629 0,795 1,004 1,272 1,647 2,194 3,11 4,90 10,41

10"

X

R
0,374 0,340 0,307 0,279 0,246 0,216 0,181 0,149 0,098

R
0,576 0,737 0,940 1,199 1,567 2,101 3,00 4,78 10,26

15°

X

~R~
0,421 0,382 0,348 0,314 0,279 0,246 0,207 0,168 0,112

h
3

R
0,529 0,687 0,881 1,138 1,497 2,021 2,91 4,67 10,10

20°

X

TT
0,463 0,422 0,383 0,347 0,309 0,272 0,231 0,187 0,127

h
8

r" 0,487 0,639 0,831 1,018 1,433 1,950 2,82 4,56 9,93

25°

X

TT
0,501 0,458 0,418 0,378 0,-338 0,298 0,252 0,206 0,140

R
0,449 0,596 0,781 1,027 1,370 1,878 2,74 4,45 9,78

30°

X

~R
0,537 0,492 0,450 0,409 0,364 0,322 0,272 0,223 0,154

h
3

R
0,413 0,556 0,735 0,974 1,314 1,812 2,67 4,36 9,62



Fig. 11.

Graph of table B
5 .
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σ = 0.06.TABLE B6.

45° 50° 55° 60° 65° 70° 75° 80° 85°

0°

X

~R
0,280 0,252 0,229 0,208 0,185 0,162 0,134 0,112 0,073

R
0,660 0,832 1,041 1,312 1,688 2,242 3,17 4,97 10,54

5°

X

TT
0,342 0,311 0,282 0,254 0,224 0,198 0,167 0,137 0,091

R
0,598 0,761 0,965 1,232 1,605 2,143 3,05 4,83 10,33

10°

X

TT
0,394 0,359 0,324 0,292 0,260 0.229 0,193 0,158 0,104

R
0,546 0,704 0,905 1,166 1,527 2,058 2,95 4,71 10,18

15°

X

0,441 0,400 0,364 0,328 0,291 0,257 0,217 0,177 0,120

h
8

R
0,499 0,655 0,848 1,104 1,461 1,891 2,86 4,61 10,00

20°

X

TT
0,483 0,438 0,399 0,360 0,322 0,282 0,240 0,194 0,132

b
3

R
0,457 0,610 0,798 1,048 1,394 1,912 2,77 4,51 9,86

25°

X

TT
0,521 0,474 0,432 0,390 0,348 0,307 0,261 0,212 0,145

R
0,419 0,567 0,751 0,997 1,339 1,844 2,70 4,41 9,71

30°

X

~R
0,555 0,507 0,463 0,420 0,377 0,332 0,282 0,230 0,158

X

TT
0,385 0,528 0,707 0,945 1,276 1,775 2,62 4,31 9,56



Fig. 12.

Graph of table B6.
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σ = 0.07.TABLE B
7 .

45° 50° 55* 60° 65° 70° 75° 80° 85°

0°

X

TT
0,307 0,278 0,249 0,222 0,195 0,172 0,149 0,117 0,080

h
3

R
0,623 0,791 1,002 1,277 1,665 2,205 3,10 4,94 10,45

5°

X

BT
0,368 0,333 0,298 0,268 0,236 0,207 0,180 0,140 0,097

R
0,562 0,725 0,932 1,198 1,570 2,108 2,99 4,81 10,25

10°

X

RT
0,418 0,379 0,341 0,303 0,272 0,238 0,203 0,160 0,110

R

X

TT

0,512

0,461

0,670 0,871 1,137 1,492 2,023 2,90

0,227

4,69 10,10

15°

0,420 0,379 0,339 0,303 0,263 0,180 0,124

R
0,469 0,621 0,817 1,075 1,425 1,955 2,81 4,58 9,94

20°

25°

X

TT
0,499 0,455 0,412 0,372 0,332 0,289 0,248 0,198 0,137

R

X

TT

0,431 0,580 0,770 1,018

0,401

1,363 1,883 2,73 4,48 9,80

0,540 0,492 0,445 0,360 0,314 0,270 0,215 0,148

R
0,390 0,516 0,723 0,967 1,303 1,814 2,65 4,38 9,67

30°

X

TT
0,574 0,525 0,477 0,430 0,386 0,338 0,291 0,232 0,161

R
0,356 0,496 0,677 0,917 1,247 1,749 2,57 4,28 9,52



Fig. 13.

Graph of table B7.
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TABLE B8. σ = 0.08.

45° 50° 55° 60° 65° 70° 75° 80° 85°

0°

X

TT
0,331 0,300 0,271 0,240 0,213 0,188 0,158 0,126 0,087

R
0,589 0,754 0,961 1,236 1,608 2,151 3,06 4,88 10,36

5°

X

TT
0,390 0,352 0,318 0,285 0,251 0,220 0,186 0,148 0,103

R
0,530 0,692 0,894 1,158 1,527 2,063 2,96 4,75 10,17

10°

X

TT
0,438 0,397 0,357 0,320 0,284 0,249 0,210 0,167 0,116

h
3

R
0,482 0,639 0,838 1,098 1,456 1,983 2,87 4,64 10,02

15°

X

TT
0,483 0,437 0,393 0,354 0,314 0,276 0,283 0,187 0,130

R
0,437 0,591 0,787 1,039 1,391 1,909 2,78

0,253

4,53 9,86

20°

X

TT
0,523 0,473 0,427 0,385 0,342 0,299 0,203 0,141

h
3

R
0,397 0,548 0,738 0,985 1,331 1,846 2,71

0,274

4,44 9,74

0,152

25°

X

TT
0,559 0,508 0,459 0,413 0,368 0,325 0,220

h
3

R
0,361 0,506 0,693 0,937 1,276 1,774 2,63 4,34 9,62

30°

X

TT
0,593 0,541 0,492 0,442 0,395 0,348 0,296 0,238 0,165

h
3

R
0,327 0,467 0,645 0,886 1,218 1,711 2,55 4,24 9,46



Fig. 14.

Graph of table B
8 .
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TABLE B
9.

σ = 0.09.

1/3 \
45° 50° 55° 60° 65° 70° 75° 80° 85°

0°

X

TT
0,357 0,321 0,288 0,258 0,229 0,200 0,170 0,135 0,093

R

X

TT

0,553 0,719 0,927 1,195 1,564 2,108 3,01 4,81 10,28

5°

0,412 0,372 0,333 0,298 0,266 0,232 0,195 0,155 0,108

R
0,498 0,659 0,862 1,126 1,484 2,020 2,91

0,219

4,70 10,11

10°

X

TT
0,460 0,414 0,372 0,334 0,296 0,260 0,175 0,120

R
0,450 0,609 0,807 1,064 1,420 1,943 2,82 4,59 9,97

15°

X

TT
0,504 0,454 0,408 0,367 0,325 0,285 0,240 0,192 0,135

R
0,406 0,561 0,755 1,006 1,358 1,874 2,74 4,49 9,8C

20°

X

TT
0,541 0,492 0,441 0,397 0,353 0,309 0,261 0,209 0,145

ha
R

0,369 0,516 0,708 0,954 1,298 1,808 2,67 4,39 9,68

25°

X

TT
0,580 0,525 0,472 0,424 0,378 0,332 0,282 0,225 0,156

h
3

R
0,330 0,476 0,664 0,908 1,244 1,745 2,59 4,30 9,56

30°

X

"F
0,615 0,558 0,503 0,454 0,405 0,356 0,302 0,242 0,168

h
3

R
0,295 0,437 0,620 0,856 1,186 1,679 2,51 4,21 9,42



Fig. 15.

Graph of table B9.
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σ = 0.10.TABLE B
10

.

|/3 \
45° 50° 55° 60° 65° 70° 75° 80° 85°

0°

5°

10°

15°

X

TT 0,382 0,340 0,307 0,272 0,242 0,210 0,181 0,145 0,100

h
3

R
0,518 0,687 0,890 1,161 1,526 2,070 2,95 4,75 10,19

0,114
X

TT
0,437 0,391 0,351 0,313 0,279 0,240 0,206 0,164

R
0,463 0,626 0,827 1,090 1,447 1,988 2,86 4,64 10,03

0,125
X

~R~
0,485 0,432 0,388 0,347 0,307 0,267 0,228 0,183

R
0,415 0,577 0,774 1,031 1,386 1,914 2,78 4,53 9,90

X

0,527 0,472 0,423 0,380 0,338 0,292 0,250 0,200 0,140

R
0,373 0,529 0,724 0,974 1,320 1,845 2,70 4,44 9,73

20°

X

TT 0,567 0,507 0,456 0,409 0,362 0,315 0,270 0,216 0,149

h
3

R
0,333 0,488 0,677 0,924 1,269 1,782 2,62 4,35 9,63

25°

X

TT
0,604 0,541 0,488 0,438 0,389 0,339 0,289 0,232 0,160

h
3

R
0,296

0,640

0,447 0,633 0,873 1,211 1,716 2,55 4,25 9,50

30°

X

TT 0,573 0,519 0,465 0,415 0,362 0,309 0,249 0,173

h
s

R
0,260 0,409 0,587 0,827 1,155 1,653 2,48 4,16 9,35



Fig. 16.

Graph of table B
10.
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III. DISCUSSION OF THE VALUES FOUND, AND THEORETICAL

CONSIDERATIONS.

1. On the applicability of the new theory. The values of x.

The theory of the formation of ealdera's discussed here is based

upon the formation of a cored-out cylinder caused by the gas phase of

Perret (bibl. 3). Secondarily from this cylinder, a caldera is formed by

the walls subsiding along a funnel-shaped surface. The formation of a

caldera (a negative form), that is to say a large flat crater bottom with

steep sides, is a logical consequence of the fact that the angle ß is always
smaller than the angle a.

The walls of the cored-out cylinder form a vault with a vertical

axis which can support radial pressure. It is clear that with uniform

material the radius of the cored-out cylinder will decide the amount of

pressure that can be supported. The smaller the radius, the greater the

pressure that can be born by the vertical arch. It should be possible to

make estimations of the relation between these two, but here we will do

no more than point out that the radius of the cored-out cylinder of

Vesuvius, according to MaltiAdra's profile (bibl. 4) is about 100 m.,

while from Frank Perret 's work (bibl. 3, p. 67 and fig. 31) the con-

clusion might be drawn that x lay between 100 m. and 200 m.

After the Vesuvius eruption in 1906 there did not follow any caldera

formation, in the manner discussed. The "collapse" of which Perret

(bibl. 3, p. 94) speaks and which he shows in photo's 37 and 56, might
be considered as the beginning of a sliding in of the walls. The ''external

collapse" took place on the south east flank of the cone. It is thought

to have been due to a less resistant part of the cored-out cylinder, but

I may point out that Perret explains it in another way. It seems, in

fact, that with the Vesuvius-rock the radius x = 100
—

200 m. was too

small to occasion a caldera formation from collapse. Notwithstanding,

the Vesuvius crater gradually acquired a caldera-like shape, caused by

the walls of the cylinder crumbling away from above, where the material

was loose, and later on by rising lava filling up the vent (bibl. 1, 3

and 4).

Large caldera's, which might also be called true caldera's are formed

therefore, only when x is large, as it is only then, that the vent can

be pressed in. We must not therefore be afraid of assuming a somewhat

large radius of the cylinder. This is one of the necessary deductions of

the theory developed here: it applies only to spacious cored-out cylinders.

If we take the angle ß = 15°, x for S = 0.5, will be between 0.1 R and

0.4 R that is for R = 5000 m. between 500 and 2000 m.

2. On the depth of the cored-out cylinder. The value of h
3

.

The depth of the part of the eored-out cylinder that is here called

h
3,

as also that of the entire original cored-out cylinder, depends primarily
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upon the angle a. As soon as a becomes more acute than 70°, h
3

rapidly
increases. If we take ß = 15°, h

s
for 8 = 0.5 varies between 0.5 li

and 10 R. As in comparatively shallow coal mines slides of 85° have

been registered in hard rock, it seems to me probable that in our case

the mean angle of sliding will be 70° or larger. For ß = 15° and

8 = 0.5, this means that h, has a value between 2 R and 10 R. For

R=5000 m., h
3

would lie between 10 km and 50 km. At these depths

we approach the magma chamber. For some geologists these depths may

seem outrageous, and I must confess that at Bret sight I found difficulty
in accepting such a conclusion, but we shall see that further considerations

lead us in the same direction. To make this clear, we must first examine

the degree of force of a volcanic eruption.

3. On the degree of force of a volcanic eruption.

The motive force of a volcanic eruption is the magmatic gas. As

in a violent eruption magma is always thrown out, it cannot he asserted

in general that in the magma chamber before the eruption there has

l>een a separation between gas and magma. Before the-eruption the gas

is in solution under pressure in the magma.

According to the present state of penological knowledge, I believe,

we must suppose that by crystallization of the magma in the depth the

gas is held in solution in the residuary magma under a constantly in-

creasing pressure. The increase of pressure can only go as far as the

counter-pressure allows. In other words the maximum tension of the

gasses dissolved in the residual magma is equal to the resistance of the

rock above the chamber.

The pressure of gas at the moment of eruption, that is the initial

pressure of the eruption, just exceeds the counter-pressure which is

exerted upon "the magma chamber. It may be taken that up to depths
of 100 km the pressure will increase with a constant ratio to the depth.

Assuming to these depths a mean specific gravity of the rock of 3,

the increase of pressure per 10 km will be 3000 kg/cm
2

.

At a depth

of 50 km the pressure would be 15000 kg/om 2
.

With an eruption from

the depth of 50 km the initial pressure would therefore be 15000 kg/cm 2
.

There is another factor besides the gas pressure which determines the

force of the eruption. This is the length of time during which large

quantities of gas per time unite escape. A certain pressure being given

by the depth, the force of an eruption will depend upon the total amount

of dissolved gas and therefore upon the volume of the magma in the

chamber, from which the gas escapes. It is therefore logical to assume,

that violent eruptions can only take place, where the magma chamber

is large.
The force of a volcanic eruption, therefore, can be physically defined

as the product of gas pressure and the amount of gas, and geologically

expressed as the function of the depth of the •chamber and of its volume.

In 1927 I was able to prove by experiments (bibl. 1), that the radius

of a cored-out cylinder is a function of the velocity of the eroding gas.
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The velocity itself is a function of the amount per time unite of escaping

gas. Further the experiments seemed to show, that at a given pressure

a certain amount of time is needed for coring out the cylinder.
The widening begins below and works upwards by eddies to the top,

provided there is a sufficient amount of gas available.

Caldera-formation as here described will only take place when the

chamber lies deep down, as it is only then that the tension of the gas

can be great, and when the volume of the chamber is great, as only then

the quantity of gas is sufficient to core out a cylinder. It should be

possible to find the depth of the magma chamber from the initial pres-

sure. So far there are no data known on this subject, but is ought to

be possible to determine the initial pressure approximately from the gas

column of which Perket gives a representation (bibl. 3, p. 45, fig. 31),

as it rose, up during the intermediary gas phase in Vesuvius and which

only spread out horizontally at a height of 10 km above the vent.

'' Let the reader think of globular masses of compressed vapour almost

exploding in the air at more than 10 kilometers above the vent, and then

try to imagine the original tension of the. gas and the degree of its

acceleration 'within the shaft of the volcano" (bibl. 3, p. 45—46).
If it prove leasable to arrive at an idea of the initial pressure in

this way and that this is found to be very high, wc must not forget
that the force of the eruption of Vesuvius in 1906 during the intermediate

gas phase was small compared to the force that is needed to form a true

caldera via a cored-out cylinder. In the Krakatoa eruption in 1883 the

gas column was probably 50 km high, and therefore the minimuim depth
of the magma chamber much greater than in the Vesuvius eruption
in 1906.

4. On the most probable combination of x and h3.

Returning to what we said on p. 193 and 215 about the angle of a,

we must point out in the first place that a given size of the caldera can

lie arrived at mathematically by various combinations of x with h
3

that

differ greatly. For S =0.5 and ß = 15° the combinations vary between

x=0.4 R with h
3
= 0.5 R with a= 45° and x = 0.1 R with h

3
= 10 R

with a= 85°. The point now is to ascertain geologically which com-

bination is the most probable, that with a large h
3

or with a small h
3

.

The experiments already described showed that the greater the pres-

sure is in the duct of the gas, the greater the radius of the cored-out

shaft becomes. The pressure in the gas duct was measured in a reduction

valve. A similar reduction valve will be present in nature, the opening
of the magma chamber. But in the natural state the opening will be

constantly enlarged by the continuous erosion of the gas-stream. Only
when the magma chamber is very large the initial pressure of the escaping

gas will be comparatively slowly reduced. Only in that case a spacious
cored-out vent can be formed. With a low pressure it is a priori im-

possible for the vent to be cored-out. It seems to me, therefore, that a

combination of great depth and great volume of the magma chamber
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are necessary for the formation of a caldera in the way suggested. It

follows thus that a must be large.
A steep funnel is the most probable, not only for the reasons given

above, but also for the following. The deeper the cause of the sliding
down is, the greater must be rigidity of the rock, therefore the greater

the angle of slide
« must be.

The combination of a large h
3

with a small x seems to me, therefore,

the most probable. For a caldera with R = 5000 m. and S = 0.5 and

ß t= 15° the most probable combinations would lie between:

x = 0.1 R with h
3

c= 10 R, thereforex = 500 m with h
3
= 50 km (<* = 85°).

and x = 0.2 R with h
3
= 3 R, therefore x = 1000 m withh

3
= 15 km (a = 75°).

5. On the duration of the paroxysms and the periods of quiescence in

caldera forming volcanoes.

In bibl. 2 I have endeavoured to show that the cored-out cylinder
of Krakatoa in 1883 which led to the caldera being formed, did not lie

at the point of the preliminary eruptions which took place from May 20th

to Aug. 26th from the Perboewatan volcano amongst others, but about

2 km to the south. R. D. M. Verbeek had already ascertained (bibl. 10)
that the caldera formation of 1883 was not the first, but had been pre-

ceeded by a larger one. After the first caldera formation .according to

the theory here developed, the cored-out cylinder must have been choked

up by the sliding down material. It is probable that a funnel-shaped

vent closed in this way by loose material, will shut off the magma

chamber less effectively than the former narrow vent filled with congealed

magma. It is also natural that with the increasing gas pressure in the

magma chamber the gas will sometimes find an outlet along a weak line

in the sliding plane. I regard the formation of the Perboewatan and

Danan volcanoes as due to the escape of gas along a sliding plane, just
as I regard the present activity of Krakatoa as escape of gas along the

sliding plane of 1883. With the leaking out of magmatic gas, magma

is carried along and thus a volcano is built up. This stage may continue

for a long time. In the case of Krakatoa it probably lasted for centuries.

Later on the leakage was choked (1680), so that the pressure in the

magma chamber increased more and more during 203 years. On May 20

1883 the weak place was once more opened, the activity gradually in-

creased until on Aug. 26th 1883 the paroxysm took place. The actual

eruption from the centralvent which formed the cored-out cylinder, began

on Aug. 26th 1883, reached its height on Aug. 27*h and died out on

Aug. 28th - at 6 o 'el. in the morning.

The duration of' the actual eruption, which caused the caldera for-

mation, was thus very short. This is quite natural, because as soon as

a wide channel has been bored by the eroding current of gas, the tension

of the gasses dissolved in the magma, quickly decreases. Then the wide

eruption channel is choked up and the eruption is over. There was no

activity at Krakatoa after Aug. 28*h 1883.
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It was 44 years, up to Dec. 1927, before the gasses had again

acquired sufficient tension to leak out along weak lines in the sliding

plane. Presumably, therefore, we are now witnessing the formation of

a new series of small secondai-y Krakatoa volcanoes, again lying excentric

with respect to the principle axis. (In other caldera's, such as in Batoer

on Bali (bibl. 7) the secondary volcanoes are formed centrally).
To sum up, I think I may conclude, that the paroxysmal eruption

which primarily creates a cored-out cylinder and secondarily a caldera,
lasts only a very short time, some days, but that the period of rest

between two caldera forming eruptions is very long (centuries), that

moreover between two paroxysms of the first order a lengthy period of

subdued constructive volcanic activity intervenes which may last for

centuries. The great depth of the volcanic magma chamber that is

here postulated, demands a great length of time to bring about the high

gas-pressure necessary to overcome the counter-pressure of the overlying
rock. A small leakage has little influence upon the increasing gas-

pressure.

Several volcanoes are known in which a caldera formation must have

taken place more than once, fe. g. Krakat.oa, Batoer and Idjen. The rarity-
with which caldera forming eruptions have taken place in historical time

is in itself however a proof that the period of rest between two paroxysms

of the first order must he very great.

IV. SYNOPSIS OF THE THEORY OF THE FORMATION

OF CALDERAS.

Hypothetical premises.

1. It is possible for Pkrret's gas phase to be more violent than in the

eruption of Vesuvius in 1906. (Perret type).

2. The primary result of the gas phase is the formation of a cored-out

cylinder and secondarily the collapse of the cylinder along a funnel-

shaped sliding plane, formes a caldera.

Conclusions.

1. For this caldera formation a large quantity of gas under high pres-

sure is necessary.

2. A mathematical treatment of the problem leads to the conclusion

that the depth of the magma chamber must be great (probably of the

order of 15—50 km).

3. Only violent eruptions (paroxysms of the first order) can form a

large cored-out cylinder.
The degree of force of a volcanic eruption is a function of the

depth and the volume of the magma chamber.

4. For collapses along sliding planes a wide eruption cylinder is neces-

sary probably of the order of 1000—2000 m).
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5. The duration of a paroxysm of the first order (destructive activity)
is very short (some days) as compared to the period of quiescence
before the next paroxysm of the first order (some centuries).

6. During these centuries the gas pressure must rise to equal the weight
of the overlying rocks.

7. During the quiescent period secondary volcanoes may be formed by

leakage of gas (constructive activity).
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