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Chapter 1

General Introduction

Dicranum Hedw. (Dicranaceae, Bryophyta) is a large genus essentially found in the Holarctic.
It mainly grows on soil in forest and mountain habitats forming dense, tomentose tufts or cushions
(Crosby et al. 1999; Crum & Anderson 1981). Because of their morphological plasticity and
broad distribution range, members of the genus Dicranum Hedw. (Dicranaceae, Bryophyta) are
often difficult to identify, especially at the species level, hence many morphological species
boundaries remain poorly understood. Furthermore, no comprehensive and complete study
of this genus is available This study focuses on the phylogeny and species delimitation within
Dicranum, a Holarctic genus. Morphological and molecular species circumscription of species
complexes are first studied, forming the basis for a phylogenetic reconstruction of the genus.

MEETING BRYOPHYTA

Bryophyta (mosses) is a highly diverse group of non-vascular land plants. With c.
12,500 species, bryophyta represents the second most diverse phylum of land plants and is
found in every terrestrial ecosystem (Frey & Stech 2009; Crosby et al. 1999). Together with
Marchantiophyta and Anthocerotophyta, Bryophyta have a haplodiplobiontic life cycle, with a
haploid vegetative and dominant gametophyte, while the ephemeral diploid sporophyte remains
attached to the maternal plant. Bryophyta display great morphological diversity, although
they are characterized by few morphological synapomorphies such as multicellular rhizoids,
leafy gametophytes and sporophytes with a capsule possessing a columella and stomata but
lacking elaters (Frey & Stech 2009). They are generally small but their size can range from few
millimetres (e.g. Ephemeropsis) up to 70 centimetres (e.g. Dawsonia superba). The more complex
structures and positions of the sporophyte has been particularly important for the classifications
of mosses, leading to a division between nematodontous and arthrodontous mosses based on
the origin of peristome teeth, with the latter being further divided into acro- and pleurocarpous
according to the position of the perichaetia on the stem, and into haplo- and diplolepideous
mosses based on the tissue forming the teeth of the peristome (Goffinet & Shaw 2009).

Haplolepids (Dicranidae) represent the second largest subclass of mosses, after the
diplolepideous-alternate mosses (Bryidae) (Stech et al. 2012). They are usually characterized by
a peristome with a single row of arthrodontous teeth around the opening of the capsule (La Farge
2002; Herndndez- Maqueda et al. 2008; Stech et al. 2012). Currently, Dicranidae are divided into
six recognized subclasses (Pottiales, Dicranales, Archidiales, Grimmiales, Bryoxiphiales, Scouleriales;
Goffinet & Shaw 2009; Frey & Stech 2009) with two additional subclasses included in Frey & Stech
(2009) (Mitteniales, Catoscopiales). Together with Grimmiales and Pottiales, Dicranales is one of



the largest order of the subclass and is characterized by usually smooth lamina cells, differentiated
alar cells, a strong costa and traberculate and striate peristome teeth (Goffinet et al. 2009;
Frey & Stech 2009). The family Dicranaceae is complex family of the order Dicranales, which
morphological concept has been redefined many times, counting up to 55 genera (e.g. Vitt 1984;
Goffinet & Shaw 2009). The advances in molecular phylogenies allowed a clearer circumscription
of Dicranaceae and reduced the number of genera to 24 (Stech & Frey 2008; Frey & Stech 2009).

MOLECULAR AND BARCODE MARKERS

During the past twenty years, DNA sequences of bryophytes have been increasingly used
in systematic studies and taxonomical revisions giving new insights in bryology (Stech & Quandt
2010). While the first studies including DNA data utilized only one or two markers, the number
of available markers, especially mitochondrial ones, has increased rapidly in the last ten years.
Nevertheless, most of the studies still rely on four principal markers, namely trnl-F, rps4, rbcl and
ITS (Stech & Quandt 2010). Recently, much effort has been placed in finding universal barcode
markers. In addition to these traditional markers, atpF-atpH, matK, psbK-psbl, rpoB, rpoC1 and
trnH-psbA have been suggested as potential bryophyta barcode markers (CBOL Plant Working
Group 2009). Of these ten potential loci, only six showed features that are suitable to delimit
moss species (trnl-F, rps4, trnH-psbA, rbcl, matK and ITS; Liv et al. 2010, 2011). However, no
consensus has been reached yet in finding the optimal combination of barcoding markers that
are suitable for delimiting closely related species (Liu et al. 2010; Stech & Quandt 2010).

MOLECULAR SYSTEMATICS OF DICRANACEAE WITH EMPHASIS ON DICRANUM.

Although traditional morphological classification is often incongruent with modern
systematics, which is based on molecular data, the monophyly of Dicranidae (arthrodonthous-
haplolepideous mosses) is supported by all available phylogenetic reconstructions (e.g. Goffinet
et al. 2001; Hedderson et al. 2004; La Farge et al. 2002; Stech et al. 2012). However,
molecular studies have revealed that neither Dicranales nor Dicranaceae, as defined by Vitt
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to La Farge 2002 and Stech 1999.



(1984) and Goffinet & Shaw (2009), are a monophyletic group. While many taxa were clearly
separated and thus placed in new lineages (Cox et al. 2010; Hedderson et al. 2004; La Farge
et al. 2002; Stech 2008, 2012), the core of the Dicranaceae [Dicranaceae s.s. sensu La Farge
(2002)] comprised four subfamilies: Dicranoideae, Mesotoideae, Dicranoloma group, and
Leucoloma group, with Dicranoideae encompassing Dicranum, Orthodicranum, Paraleucobryum,
Chorisodontium, Eucamptodontopsis, and Holomitrium (Fig. 1). Although molecular data gave
new insights in the circumscription of the Dicranaceae, the relationships among genera remained
ambiguous. Furthermore, the molecular species circumscription within the genera remained largely
underexplored. The available molecular studies on Dicranum species complexes reveal ambiguous
relationships among species due to their limited genetic variation (Ignatova & Fedosov 2008;
Tubanova et al. 2010; Tubanova & Ignatova 2011) and is in need of further molecular studies.

TAXONOMICAL HISTORY OF DICRANUM

Dicranum is one of the largest moss genera, with more than 880 binomials
originally given (van der Wijk et al. 1962; Tropicos.org). However, the genus as currently
recognized, has ca. 90 accepted species (Frey & Stech 2009; Tropicos.org). Since the
first nomenclatural description of the family, several revisions have been made, narrowing
considerably the concept of its genera, and particularly the one concerning Dicranum.

Hedwig has described the genus in 1801 and considered D. scoparium as the type of
the genus. A total of 34 other Dicranum species were simultaneously described in his Species
Muscorum Frondosorum (1801). Of these 34 species, only three remained in the modern concept
of the genus: D. condensatum, D. scoparium and D. spurium (Peterson 1979). Bruch, Schimper and
Gumbel in 1847 (Bryologia Europea), worked on this family and described seven new genera
within Dicranaceae and recognised 11 sections under Dicranum. Nearly simultaneously, Miller
published his Synopsis Muscorum Frondosorum (1849), in which the treatment of the family
encompassed six genera and five sections under Dicranum. Most of the genera and Dicranum
species described by Bruch, Schimper & Gimel and Miller are nowadays placed in other families,
respectively other genera of the Dicranales (Goffinet & Shaw 2009; Peterson 1979). Until the
beginning of last century, several other revisions of the Dicranaceae and Dicranum have been
done on the country- or continental level (Japan, North America, Europe) leading to multiple
rearrangements of the genus and subdividing it into different subgenera or sections (Table 1;
Brotherus 1906, 1924; Mdnkemeyer 1927; Nyholm 1953, 1954, 1987; Peterson 1979 Sakurai
1951, 1952; Takaki 1964). However, in the most recent treatments available (Hedends & Bisang
2004; Ireland 2007; Gao & He 1999), neither subgenera nor sections were taken into account.

It is evident that the conceptual disharmony and multiple re-classifications at
the genus level is the expression of the difficulties to understand this taxon and to find
unique morphological characters capable of providing clear species circumscriptions.

MORPHOLOGY AND CHARACTERISTICS OF DICRANUM

Dicranum is a dioicious genus that is characterised by densly tomentose acrocarpus stems. The
leaves are generally falcate-second and lanceolate with a distal subula that varies from keeled
to tubulose. They possess a strong costa that is percurrent to slightly excurrent. In cross-section,
the costa has one row (sometimes two) of guide cells that are surrounded by stereid bands. The
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dorsal side of the costa can be smooth or ornamented with lamellae, furrows or mamillae (Fig.
2). The leaves have a well differentiated double-layered alar region. The lower lamina cells
are elongated and generally porose, while the upper lamina cells are either prosenchymatous
(elongated and porose) or parenchymatous (short and smooth) (Fig. 2). The seta is mostly solitary,
erect and twisted. It possesses an inclined capsule (Fig. 3A) with 16 bifid peristome teeth and
a long-rostrate operculum (Goffinet & Shaw 2009; Ireland 2007). Morphological characters
of Dicranum are very plastic and descriptions are usually based on few stable characters,
such as sporophytic or costal characters. Some other discriminant characters are largely
overlooked, especially in closely related species, as observed in D. bardunovii, D. septentrionale.

As in many bryophytes, vegetative reproduction plays an important role in Dicranum. While
most species can easily propagate from gametophyte fragments, some species produce specialised
structures such as flagelliform branchlets (D. leioneuron Kindb.), or have easily breakable leaf
apices (D. tauricum Sapjegin). Dicranum can also reproduce sexually. Males can be either as
large as female (Fig. 3B-C) or dwarf and growing on female stems (Fig. 3D), something called
pseudomonoicy (Crawford et al. 2009). Sexual dimorphism in Dicranum is rather frequent. It was
reported to occur in 20% of the species (Pichonet & Gradstein, 2012). Only few studies on dwarfism
in Dicranum are available (Bisang & Ehrlén 2002; Briggs 1965; Ehrlén et al. 2000; Hedends &
Bisang 201 1; Sagmo Solli et al. 1998, 2000) and little is known about the mechanisms that triggers
dwarfism, its consequences on populations structure and the possible hybridisation between species.

Fic. 2. Plant habit, leaf apex and leaf cross- section at base and upper part of A) Dicranum scoparium Hedw. and B) D. tauricum

Sapjegin.



Fic. 3. Habitus of  Dicranum
scoparium. Female cushion with mature A
sporophytes and B without sporophyte. C
Normal sized males and D dwarfed male.
Photo D by L. E. van Dijk

Fic. 4. Habitat type of Dicranum.
A forest soil, B open sandy soil, C humus on

boulder, D rotten tree bark.




DISTRIBUTION/ ECOLOGY IN THE HOLARCTIC

The maijority of Dicranum species is found in the Northern hemisphere. About 30 species are
counted for Europe and Asia (Gao & He 1999; Hedends & Bisang 2004) and 26 in Northern America
(Ireland 2007; Lawton 197 1). Generally, Dicranum species have large distributions covering more
than one continent. One species with a particularly wide distribution is D. scoparium. It is typically found
in the Holarctic, as defined by Schofield (1992). However, recently, this species has been reported
in Australia and New-Zealand (Klazenga 2012). Nonetheless, few endemics exist in the Himalaya
(D. himalayanum, D. assamicum, D. kashmirense and D. orthophyloides; Chopra 1998; Dandotiya et
al. 2011), in Japan (D. leiodontum and D. setifolium; Takaki 1972) and in the west coast of North
America (D. howellii; Ireland 2007; Lawton 1971), or Hawaii (D. speirophyllum; Staples et al. 2004).

The distribution of species in the Holarctic is strongly associated with the vegetation zones,
the degree of continentality and the altitudinal belts [e.g. D. scottianum and D. canariense occurring
both in oceanic areas (Dierssen 2001; Hedends & Bisang 2004)]. Most of the species show a
preference for acidic environments. They are found on all kinds of substrate: rocks, decomposed
wood, sand, humus, bark, fen and bogs (Fig. 4 A-D). However, complete information about the
distribution of many species, especially in species complexes, is still incompletely known, due in
part to a poor morphological understanding and confusions between closely related species.
Many species are considered as morphologically plastic and consequently as occurring in a broad
spectrum of habitats. Recent molecular studies on the D. acutifolium species complex, however,
revealed that this species complex contained multiple lineages that can be identified by few
but distinct characters and occurred in different habitats (e.g. Otnyukova 2007; Tubanova
et al. 2010; Tubanova & Ignatova 2011). This suggests that other Dicranum species with
morphological plasticity might encompass several taxa with more restricted habitat preferences.

AIMS AND OUTLINE OF THE THESIS

This thesis aims at disentangling species circumscriptions of Dicranum species based on
phylogenetic inferences. Phylogenetic reconstructions have been done sequencing five chloroplast
(rps4-trnT, trnl-F, psbA-trnH, rps19-rpl2, rpoB) and one nuclear (nrITS) region. Besides molecular
approaches, morphological studies were carried out in order to redefine the most suitable combination
of characters for identifying species within complexes. A barcoding approach was also used on
selected taxa, in order to evaluate the identification power of the markers on closely related species
and we further tested the validity of automated species delimitation methods (GMYC and PTP)
by comparing the estimated species with morphological and phylogenetic species circumscriptions.

In chapter 2, Dicranum scoparium species complex has been studied. The molecular analysis
shows that D. majus is clearly separated from the D. scoparium species complex. However, the
circumscription of D. bonjeanii, D. nipponense and D. howellii are less clearly distinct. Additionally, in
contrary to its numerous phenotypes, D. scoparium is proven to be genetically very homogeneous.
Nevertheless, a subclade including specimens from both northern America and Asia is revealed.

Chapter 3 explores the species boundaries of another species complex, the D. acutifolium
complex. Recent molecular studies have shown that D. acutifolium and D. brevifolium are poorly
circumscribed. Moreover, they revealed two new species, D. bardunovii and D. septentrionale, which



were further supported by morphological characters. In this chapter, additional molecular studies
provide stronger support for the four above-mentioned species. Furthermore, it is shown that the
current concept of D. brevifolium includes characters attributed to the new species D. septentrionale,
known from Russia. Additionally, the distribution area of this latter species is extended to Scandinavia.

Chapter 4 investigates the identification capacity of molecular markers using
arctic Dicranum species. Phylogenetic studies usually employ several barcoding markers.
However, few studies have investigated the circumscription capacity of these barcoding
markers in bryophytes. It is shown that none of the markers, taken independently, is
sufficiently discriminative for species level identification. However, increasing the number of
variable characters by combining several markers provides supported species delineation.

In chapter 5, 28 out of 30 European Dicranum species are included in a phylogenetic
analysis and two methods of species delimitation are compared, namely the general mixed Yule
coalescent approach (GMYC) and Poisson tree processes (PTP). In this chapter, we investigate
the congruence between morphological and molecular species circumscriptions. In line with the
results obtained in chapters 2, 3 and 4, supported species delineation was obtained using
five chloroplast and one nuclear markers, but species relationships remained unresolved. The
phylogenetic reconstruction reveals that six species are molecularly indistinguishable from
closely related allies, reducing the number of species to 24. The GMYC and PTP methods
tended to overestimate the number of phylogenetic entities, estimating between 34 and 58
species, and exposed several incongruences between morphological species concept and
molecular phylogenetic species delineations. These differences might ensue from evolutionary
processes that were so far undiscovered, but might also be linked to methodological issues.









Chapter 2

What’s in a Name? Disentangling the Dicranum scoparium
species complex (Dicranaceae, Bryophyta)

A. S. Lang and M. Stech

Published in Systematic Botany, 2014, 39(2): 369-379

ABSTRACT

Dicranum is a large (ca. 90 species) and taxonomically complex moss genus. Circumscriptions
and relationships of many Dicranum species remain ambiguous due to the absence of a worldwide
revision and comprehensive phylogenetic analyses. In this study, we address species circumscriptions
and relationships of presumed close allies within Dicranum sect. Dicranum. Molecular phylogenetic
reconstructions based on five chloroplast regions and nrITS suggest a close relationship between
D. bonjeanii, D. howellii, D. nipponense, D. japonicum, D. cf. lorifolium, and D. scoparium, which can
be regarded as the D. scoparium species complex. In contrast, D. majus and D. polysetum, as well
as D. fuscescens and D. spadiceum (former varieties of D. scoparium), are separated from the
complex. Molecular data are generally congruent with the morphological species concept, but
the circumscriptions of D. bonjeanii, D. japonicum, D. cf. lorifolium, and D. scoparium need further
study. Most analysed D. scoparium specimens from across its Holarctic distribution are contained in

one clade (D. scoparium S.S.), but a number of North American specimens are resolved as closely
related to D. japonicum and D. cf. lorifolium. Costa cross sections and characters of the leaf apex
(shape, serrulation of margins) are most relevant for identifying the studied Dicranum species
morphologically.

INTRODUCTION

In bryophytes, polyphyly of (morpho)species may be the rule rather than the exception,
due to a limited number of available morphological characters, the focus on a few key characters
with recurrent homoplastic transitions of character states, and the influence of the environment
on character variability (Vanderpoorten & Goffinet 2006). Insufficient knowledge of the spatial
distribution of morphological variation has furthermore led to the description of high numbers
of species and intraspecific taxa, especially in morphologically highly variable genera. In
fact, incongruence between morphological species circumscriptions and molecular phylogenetic



reconstructions is increasingly being reported (for review see Heinrichs et al. 2009; Vanderpoorten
and Shaw 2010). On the other hand, molecular inferences in bryophytes are often based on a
single or few molecular markers (Stech & Quandt 2010), and genetic processes such as rapid
diversification and incomplete lineage sorting, in particularly in recently diverged species (cf.
Rittmeyer and Austin 2012) as well as cryptic speciation (e.g. Bickford et al. 2007), have not yet
been well studied. Consequently, further comparative analyses of molecular versus morphological
characters are necessary to better understand species circumscriptions in bryophytes.

Dicranum is a genus of haplolepideous mosses (Dicranidae) with a predominantly Northern
Hemisphere, cool-temperate distribution (Frey & Stech 2009). More than 880 binomials were
originally described in Dicranum (van der Wijk et al. 1962; Tropicos.org). To cope with this diversity,
several regional taxonomic revisions and systematic treatments have been carried out (e.g. Sakurai
1951; Nyholm 1954, 1987; Takaki 1964, 1972; Peterson 1979; Crum & Anderson 1981; Noguchi
1987; Bellolio-Trucco & Ireland 1990; Otnyukova 2001; Hedends & Bisang 2004; Ireland 2007).
However, with more than 90 currently accepted species, Dicranum (including Orthodicranum) is still
one of the largest and taxonomically most complex genera of Dicranaceae and the Dicranidae in
general (Frey & Stech 2009; Tropicos.org). Morphological species circumscriptions and relationships
remain difficult to assess in Dicranum as long as neither a worldwide revision nor comprehensive
molecular phylogenetic analyses are available.

Dicranum species are characterized by falcate-secund, narrowly lanceolate to ovate-
lanceolate, usually unistratose leaves; entire to serrate leaf margins; a subpercurrent to shortly
excurrent narrow costa that is smooth or with serrate ridges at back; subquadrate to elongate,
thick-walled, often porose laminal cells; well-developed alar cells and a haplolepideous, Dicranum-
type peristome with a single row of teeth around the capsule mouth (e.g. Hedenés & Bisang 2004;
Ireland 2007; Frey & Stech 2009). The main difficulty is to find stable morphological characters at
the species level. Gametophytic characters, such as serrulation of leaf margins, number of costal
ridges, shape of upper laminal cells, and leaf length and shape, vary considerably depending
on environmental conditions (e.g. Hagen 1915; Briggs 1965; Bellolio-Trucco & Ireland 1990;
Ireland 2007). Perichaetial leaves and sporophytic characters, which have been considered more
significant for species identification (e.g. Hagen 1915; Peterson 1979), are often not available.

The problem of morphological species delimitation is well exemplified in a number of species
of section Dicranum (Hedw.) Sull. (sensu Nyholm 1987; Bellolio-Trucco & Ireland 1990), whose
circumscriptions are unclear due to morphological variability and intergrading forms. These species
(including the Holarctic D. scoparium Hedw., D. bonjeanii De Not. and D. majus Turner as well as
more narrowly distributed species such as D. lorifolium Mitt., D. japonicum Mitt. and D. nipponense
Besch. in Asia, and D. howellii Renauld & Cardot in North America), may form a complex of
closely related species, or represent intraspecific taxa within one broadly circumscribed species, D.
scoparium s.l. (e.g. Nyholm 1954, 1987; Lawton 1971; Peterson 1979; Crum & Anderson 1981;
Noguchi 1987; Gao & He 1999; Hedends & Bisang 2004; Ireland 2007).

In this paper, we address species circumscriptions and relationships of D. scoparium and
six presumed close allies (D. bonjeanii, D. howellii, D. japonicum, D. cf. lorifolium, D. majus, and
D. nipponense), which together may form a species complex. Inferences are based on molecular
phylogenetic reconstructions using chloroplast (rpoB, trnH-psbA, trnl-trnF, rps4-trnT, rps19-rpl2)
and nuclear ribosomal ITS sequences. Implications of the molecular data for the suitability of
gametophytic characters (e.g. number of costal ridges, serrulation of leaf margins) for species



identification are discussed.

MATERIALS AND METHODS

Sampling— A total of 111 Dicranum specimens were sampled. The sampling included 17
specimens of which all or part of the sequences had been generated for earlier studies (Stech
1999; Stech et al. 2006; Stech & Frey 2008; Lang & Naciri 2010) and 94 newly analysed
specimens. As initial molecular analyses showed that several specimens were probably misidentified,
morphological re-identifications were carried out by the authors using identification keys for
Dicranum in Japan (Noguchi & Iwatsuki 1987), China (Gao & He 1999), Europe (Hedends & Bisang
2004), and North America (Ireland 2007). These resulted in the following specimen counts and
species names used in the final analyses (cf. Figs. 1, 2; Appendix 1): 63 specimens of D. scoparium,
40 of other species of section Dicranum (five D. bonjeanii, five D. howellii, six D. japonicum, 14 D.
cf. lorifolium, seven D. majus, two D. nipponense, and one D. polysetum), and eight of species of
other sections of Dicranum (one D. fragilifolium, two D. fuscescens, one D. montanum, and four D.
spadiceum). Of the latter species, D. fuscescens (sect. Fuscescentiformia) and D. spadiceum (sect.
Muehlenbeckia) (Chopra 1975; Nyholm 1987; Bellolio-Trucco & Ireland 1990) were former
varieties of D. scoparium. Dicranum fragilifolium (sect. Elongata) and D. montanum (sect. Montana)
were included for comparison as representatives of species that have never been associated
with sect. Dicranum. The sampling of D. scoparium covered both the intraspecific morphological
variation and distant parts of the species’ Holarctic distribution range, i.e. North America (U.S.A,,
Canada), different parts of Europe (from Iceland to the Caucasus) and Macaronesia, and East
Asia (Taiwan, South Korea). However, the sampling was biased towards Continental Europe due
to limited availability of collections from other regions and misidentified collections. Besides, D.
scoparium was recently included in the bryoflora of Australia (Klazenga 2012), but no material
from Australia was available. Four samples of Holomitrium, one H. crispulum Mart. and three H.
arboreum Mitt., were chosen as outgroup representatives based on the sister-group relationship
of Holomitrium and Dicranum in earlier phylogenetic reconstructions (La Farge et al. 2002; Stech
et al. 2006).

Molecular Marker Selection—Five chloroplast DNA regions described in Lang & Naciri
(2010), i.e., partial rpoB gene, trnH_ -psbA and rps19-rpl2 intergenic spacers, and two parts
of the trnS-F region, namely rps4-trnT = spacer and trnl-F (trnL,, intron and ftrnL , -trnF_,
spacer), as well as one nuclear region (nrITS1-5.8S-1TS2) were amplified and sequenced. Except
for rpoB and rps19-rpl2, these regions are among the most frequently used phylogenetic markers
in bryophytes (Stech & Quandt 2010). The regions rps19-rpl2 and rpoB presented, together with
rps4-trnT, the highest sequence variation at the intraspecific level in Dicranum scoparium (Lang
& Naciri 2010), and were included to overcome the problem of low sequence divergence in
Dicranum as indicated in earlier phylogenetic studies (Stech 1999; La Farge et al. 2002; Stech et
al. 2006). The rps19-rpl2 region has also been found in the mitochondrial and nuclear genomes
of some species of green algae, bryophytes, and angiosperms (e.g. Turmel et al. 2002; Raubeson
et al. 2007; Terasawa et al. 2007; Wang et al. 2008). Although the primers developed by Lang
& Naciri (2010) were based on the chloroplast genome of the moss species Physcomitrella patens
(Hedw.) Bruch & Schimp. (Sugiura et al. 2003), we performed a BLAST search (Altschul et al. 1990)
and compared our sequences with chloroplast and mitochondrial rps19-rpl2 sequences of several



other land plants in GenBank, to assure that only orthologous copies from the chloroplast genome
were used.

DNA Extraction, Amplification and Sequencing—Several leaves of a single stem apex taken
from fresh or herbarium collections were carefully cleaned in demineralised water. DNA was
extracted from the dried leaves using the DNeasy plant mini kit (Qiagen, Hilden, Germany) and
eluted in 100 Yl AE buffer. The PCR reactions were carried out in a final volume of 20 pl. The
reaction mixture contained 1X buffer, 2.5 mM MgCl,, 0.2 mM dNTPs, 0.5 UM of both forward and
reverse primers, 0.0375 U (5 U/pl) Biotaq polymerase (Gentaur, Brussels, Belgium) and 1 pl DNA.
The amplification reactions for the chloroplast markers were performed following Lang & Naciri
(2010). Amplification of ITS followed Stech (2004) except for an annealing temperature of 45 °C.
The PCR products were purified and sequenced at Macrogen Inc. (www.macrogen.com). GenBank
accession numbers of all sequences are listed in Appendix 1.

Alignment and Phylogenetic Reconstruction—Sequences were aligned in Geneious v5.3.6
(Biomatters 2010) using 65% similarity matrix costs, and manually adjusted. Short hairpin-
associated inversions in the frnH-psbA and trnl-F spacers, which can flip at the population level
and may significantly reduce phylogenetic structure if undetected (Quandt and Stech 2004; Borsch
and Quandt 2009; Whitlock et al. 2010), were positionally separated in the alignment and not
coded as indels. The dataset used for phylogenetic analyses has been submitted to TreeBASE
(study number 13703).

Phylogenetic inferences were based on maximum parsimony (MP), maximum likelihood
(ML) and Bayesian inference (Bl) analyses. Best-fit models of nucleotide sequence evolution were
selected according to the Akaike information criterion in MrModeltest (Posada and Crandall 1998)
executed through PAUP* 4.0b10 (Swofford 2002), namely HKY + [ for the non-coding chloroplast
markers (rps4-trnT, trnL-trnF, trnH-psbA, rps19-rpl2), and HKY + | for rpoB and nrlITS. Gaps were
coded as informative by a simple indel coding strategy (SIC) (Simmons and Ochoterena 2000)
implemented in SeqState (Miller 2004). Sequence and indel data were treated as separate and
unlinked partitions, employing the restriction site model (‘F81’) for the indel matrix.

To check for incongruence, phylogenetic reconstructions based on chloroplast and nuclear
sequences (93 and 90 ingroup samples, respectively) were visually compared. In addition,
an incongruence length difference test (ILD, Farris et al. 1994) as implemented in PAUP* was
performed with 100 replicates.

Heuristic searches under parsimony were performed in PAUP* using simple sequence addition
and tree bisection-reconnection (TBR) branch swapping. Bootstrap searches under parsimony were
performed with 10,000 replicates using the fast bootstrap option. Maximum likelihood analyses
were carried out with RAXML v.7.2.6 (Stamatakis 2006) employing the graphical user interface
raxmlGUI v.0.93 (Silvestro and Michalak 2012). Bootstrap analyses under ML were done using
the thorough bootstrap heuristics algorithm with 20 runs and 200 replicates. Bayesian analyses
were run on the Bioportal server (www.bioportal.uio.no). Bayesian posterior probabilities were
calculated based on the Markov chain Monte Carlo (MCMC) method, using MrBayes v3.0b4
(Huelsenbeck and Ronquist 2001, Ronquist and Huelsenbeck 2003). The a priori probabilities
supplied were those specified in the default settings of the program. Two runs with four chains
were run simultaneously (30 X 10° generations for chloroplast and combined data and 11 X
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10° generations for ITS), with the temperature of the single heated chain set to 0.5. Chains were
sampled every 1,000 generations and the respective trees written to a tree file. Fifty percent
majority rule consensus trees and posterior probabilities of clades were calculated by combining
the four runs and using the trees sampled after the chains converged. Trace plots generated in
Tracer v1.5 (Rambaut and Drummond 2007) were used to check for convergence of the runs
(plateaus of all runs at comparable likelihoods) and to infer the ‘burnin’, which was set to 25%.

ResuLts

Sequence lengths of nrITS ranged from 753—845 nucleotides (nt) in the ingroup (754—-990
nt including Holomitrium). Corresponding length ranges of the chloroplast markers were 509—
521 nt (509-521) for rps4-trnT, 449—-462 (449—-462) for trnL-trnF, and 139-140 (139-140) for
trnH-psbA. No length variation was observed in rps19-rpl2 (310 nt) or in the sequenced part of
rpoB (457 nt). The combined chloroplast and ITS alignment comprised 2993 positions including
Holomitrium (rps4-trnT positions 1=521, trnl-trnF 522-986, trnH-psbA 987-1135, rps19-rpl2
1136—1445, rpoB 1446—1902,ITS 1903-2993). Of the 2993 positions, 149 ambiguous positions
in ITS were removed from the further calculations. Of the remaining 2843 included positions, 309
were variable, and 204 of the variable positions were parsimony-informative (rps4-trnT 40/27,
trnl-trnF 26/23, trnH-psbA 17/10, rps19-rpl2 21/11, rpoB 20/13, ITS 185/120 variable/
parsimony-informative positions). Coding gaps by simple indel coding (SIC) yielded a total of 145
indel characters (including Holomitrium), of which four corresponding to an inversion in frnH-psbA
were excluded from phylogenetic analysis. Of the remaining 141 indels characters, 93 (rps4-trnT
1, trnl-trnF 3, trnH-psbA 1, ITS 88) were parsimony-informative.

Maximum parsimony analyses with or without indels included resulted in differently resolved
most parsimonious phylogenetic reconstructions, but did not show incongruence with respect to
significantly supported clades. Consistency indices of the reconstructions with or without indels
included were similar (chloroplast: CI 0.6816 versus 0.6755, ITS: Cl 0.9342 versus 0.8731),
indicating only a slight increase in homoplasy due to the inclusion of the indel characters in either
case.

The single optimal ML trees calculated from the combined chloroplast markers versus ITS
including indels (InL = -3,808.37 and InL= -3,216.40, respectively), are shown in Fig. 1, with
bootstrap support values (BS) from maximum parsimony and maximum likelihood analyses as well
as Bayesian posterior probabilities (PP) indicated at the branches. Since both visual inspections of
chloroplast versus ITS tree topologies and the ILD test (p = 0.23) indicated that the two datasets
were congruent, combined analyses of all markers were performed as well, of which the optimal
ML tree is shown in Fig. 2 (InL = -7,367.38). Clade support in the respective analyses without indels
was similar to the analyses with indels and therefore not indicated on the trees.

All trees displayed short branches within the ingroup (Figs. 1, 2). A clade comprising six
species of sect. Dicranum (D. bonjeanii, D. howellii, D. japonicum, D. cf. lorifolium, D. nipponense, and
D. scoparium) was recovered in both separate analyses (Figs. 1A, B) and with maximal support

(100% BS, PP 1) in the combined tree (Fig. 2). Dicranum majus and D. polysetum were resolved
outside this clade. Relationships between them and the other included Dicranum species remained
largely unsupported. All species with more than one accession sequenced were resolved as
monophyletic, except D. scoparium in all trees (Figs. 1, 2), D. bonjeanii in both separate trees (Figs.
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1A, B), and D. japonicum in the ITS tree (Fig. 1B). The clades of D. nipponense and D. spadiceum
received = 90% BS and PP > 0.99 in all analyses. The clades of D. howellii, D. cf. lorifolium, and
D. majus were significantly supported in the chloroplast and combined trees (290% BS except
84% for D. cf. lorifolium in Fig. 2, PP 1) but received lower (D. majus: -/73% BS) or no support (D.
howellii, D. cf. lorifolium), respectively, in the ITS tree. The clade of D. fuscescens received significant
support in the ITS and combined trees but no support in the chloroplast tree. The specimens of
Dicranum bonjeanii and D. japonicum were split into two clades in the chloroplast and ITS trees,
respectively, and resolved as monophyletic with moderate ( D. bonjeanii: 95/73% BS, PP 1) or
no support (D. japonicum), respectively, in the combined analysis. The majority of the sequenced
D. scoparium specimens, including all European ones as well as ten from North America and two
from East Asiq, clustered in one clade in all analyses, with 100/84% BS and PP 1 in the combined
analysis. Further putative D. scoparium specimens from North America and East Asia were part of
a clade together with D. japonicum and D. cf. lorifolium (72/83% BS, PP 1 in the chloroplast and
combined trees), but relationships within this clade remained unresolved.

DiscussioN

Tackling Species Circumscriptions and Relationships in Dicranum—Earlier molecular
phylogenetic analyses indicated low sequence divergence within a clade comprising species
of Dicranum (including Orthodicranum) and the closely related genera Chorisodontivm and
Paraleucobryum, contrary to higher sequence divergences in other species-rich genera of
Dicranaceae such as Dicranoloma and Leucoloma (Stech 1999; La Farge et al. 2002; Stech et al.
2006). However, the respective analyses were based on limited taxon sampling and use of only
one or two markers, rendering inferences about the suitability of DNA sequence data to resolve
species circumscriptions and relationships in Dicranum difficult. Recently Tubanova and Ignatova
(2011) analysed Russian Dicranum species based on nrITS sequences from a larger taxon sampling.
Their study revealed some well-supported clades consisting of a single species or a few closely
related species each, but the overall resolution and support of the phylogenetic reconstruction
remained low. In cases of little molecular variation and phylogenetic structure, the best strategy
would probably be to combine the information of several suboptimal markers to collect a small
number of synapomorphic sites from each of them, until well-resolved phylogenetic trees can be
produced (e.g. Edwards et al. 2007; Leaché and Rannala 2010; Stech & Quandt 2010; Dong et al.
2012), provided that issues such as evolutionary model selection per marker, possible incongruence
between markers, or incomplete lineage sorting are taken into account (e.g. Holland et al. 2004;
Kubatko and Degnan 2007; Liv and Pearl 2007). In the present study, trees generated separately
from five chloroplast markers and ITS (Fig. 1) displayed an overall similar topology despite less
resolution in ITS. Combined analyses of all six markers generally increased statistical support for
clades at the species level in Dicranum (Fig. 2). Furthermore, all species with more than one accession
sequenced (except possibly for D. scoparium, see discussion below) were resolved as monophyletic
in the combined analysis, indicating that molecular lineages were generally congruent with the
morphological species concept in Dicranum. However, the respective clades representing species
were partly unsupported and their relationships remained largely unresolved. Probably an even
higher number of molecular markers, including variable mitochondrial and single-copy nuclear
markers, needs to be combined to infer supraspecific relationships in Dicranum.



Molecular Characterisation of the D. scoparium Species Complex—The present molecular
phylogenetic reconstructions (Figs. 1, 2) suggest a close relationship between D. bonjeanii, D.
howellii, D. nipponense, D. japonicum, D. cf. lorifolium, and D. scoparium, which can be regarded
as the D. scoparium species complex. These species were all considered to belong to section (or
subgenus) Dicranum (e.g. Sakurai (1951) [as subgenus Scopario-Dicranum]; Takaki 1964; Nyholm
1987, Bellolio-Trucco & Ireland 1990), except D. nipponense, which was placed into a new subgenus
Nippono-Dicranum by Sakurai (1951) based on peristome characters. As these characters turned
out to be insignificant, however, and no other characters supported this segregation, D. nipponense
was placed close to D. scoparium and allies again (Takaki 1964), which is supported by the
molecular data. In contrast, other species of section Dicranum sensu Nyholm (1987), namely D.
majus and D. polysetum, are separated from the D. scoparium complex based on the molecular
inferences (Figs. 1, 2). The same holds for the species that were formerly treated as varieties of
D. scoparium but placed in other sections than sect. Dicranum in the more recent literature, i.e.,
D. fuscescens (sect. Fuscescentiformia) and D. spadiceum (sect. Muehlenbeckia) (e.g. Nyholm 1987;
Bellolio-Trucco & Ireland 1990). Whether additional Dicranum species that are putatively closely
related to D. scoparium (e.g. D. crassifolium Sérgio, Ochyra and Seneca and D. leioneuron Kindb.)
fall into the D. scoparium complex as defined here remains to be tested. Besides, at present no
morphological synapomorphies are known that delimit the D. scoparium complex from D. majus and
other Dicranum species.

Morpho-molecular Species Circumscriptions—Distinction of the species here comprised as
the D. scoparium complex and D. majus has been considered difficult for a long time due to their
phenotypic plasticity. The gametophyte of D. majus is typically characterized by large plants with
longer and more strongly falcate-secund leaves than in D. scoparium, leaf margins serrate in distal
half, strongly porose lamina cells, and in particular a costa with a double row of guide cells (single
row in D. scoparium) and an irregularly furrowed abaxial surface instead of with four continuous
longitudinal ridges. However, large plants of D. scoparium may resemble D. majus, whereas small
plants of D. majus, especially plants from arctic-alpine regions, which often show only one layer
of costa guide cells, are easily confused with D. scoparium (e.g. Nyholm 1954; Takaki 1964;
Hedends & Bisang 2004; Hedends et al. 2006). The morphological variation of D. majus led to the
description of multiple varieties, of which two relate to the arctic morphotype: var. orthophyllum
A. Braun ex Milde was commonly used in North America (Grout 1937; Steere 1978), while var.
condensatum |. Hagen was recognized in the European and Russian Arctic (Hagen 1915; Brotherus
1923; Abramova etal. 1961). Wahlenberg (1814), in contrast, did not consider D. majus a separate
species with intraspecific variation, but rather a form of D. scoparium. The present molecular data
support the species status of D. majus and its separation from D. scoparium. Morphologically, the
presence of furrows on the costa and the double row of guide cells, or at least few double guide
cells that are always present at the leaf base, can be regarded as diagnostic characters for D.
majus (Hedends et al. 2006; Table 1). Whether the distinction of two geographical morphotypes in
Europe (Hedends et al. 2006) holds true at the molecular level remains to be tested.

Dicranum bonjeanii can usually be recognized by its transversely undulate upper leaf
portions, erect-patent leaves when moist, a narrow costa with two weak dorsal ridges that are
serrate to nearly entire, and a rather broad leaf acumen. However, leaf shape and undulation
have also been reported to be the most variable characters (Briggs 1965), and the taxonomic
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rank of D. bonjeanii has often been questioned due to the presence of intergrading forms with D.
scoparium. While in Europe and Asia D. bonjeanii is generally accepted as a separate species,
North American bryologists preferred to consider it as one of the multiple forms of D. scoparium,
probably induced by the environment (Grout 1937; Jennings 1951; Lawton 197 1; Peterson 1979;
Crum & Anderson 1981; but see Ireland 2007). Dicranum bonjeanii is mostly found in eutrophic
fens, whereas D. scoparium s.str. is found on different substrates mainly in dry to mesic woodlands.
Although the D. bonjeanii clade is only resolved in the combined chloroplast and ITS tree (Fig. 2),
the present molecular data indicate that D. bonjeanii can, at least in Europe, be separated from
D. scoparium s.str., which supports the ecological differentiation and morphological differences of
D. bonjeanii, in particular the narrow costa ending into a broad apex as well as the (usually two)
weakly developed costal laminae (Table 1). Whether this taxon occurs in North America as well
remains to be tested, which seems to be complicated since most of the specimens collected under
this name were wrongly identified (Ireland 2007).

Other species within the D. scoparium complex cause identification problems in more restricted
geographic areas. The western North American endemic D. howellii is characterized, when fertile, by
the gradually acuminate inner perichaetial leaves (abruptly long-acuminate, convolute-sheathing
in D. scoparium), whereas due to the plasticity of D. scoparium, the gametophytic characters of
both species largely overlap. Besides, both D. howellii and D. scoparium occur on similar substrates
(Table 1). Consequently, some authors considered D. howellii as a synonym (Grout 1937) or as a
variety of D. scoparium (Peterson 1979). At the molecular level, however, D. howellii can clearly
be distinguished from D. scoparium (Figs. 1A, 2). Gametophytically, the most reliable character to
recognize D. howellii seems to be its narrow costa with two low ridges.

The East Asian D. nipponense resembles both D. japonicum in its larger forms (Noguchi 1987)
and D. bonjeanii in its weaker forms (Otnyukova 2001). It is, however, distinguished from closely
related Dicranum species by a combination of characters including unevenly foliate stems (lower
leaves smaller than upper ones) with leaves crowded at the stem apex, falcate-lanceolate leaves
that are broadest just above the base and keeled above with a broad and dentate point, and
linear-rectangular and strongly porose laminal cells (Otnyukova 2001). Further differences with
D. bonjeanii are the strongly dentate margins and the costa having usually two to three serrate
ridges at the back (Table 1). Besides, D. nipponense grows mainly on rotten wood. Together with
the degree of molecular divergence (cf. the significant support and comparatively long branches
in Figs. 1 and 2), these characters indicate that D. nipponense is well characterized.

The circumscription of D. scoparium itself and its delimitation from D. japonicum and D. cf.
lorifolium seems to be most difficult according to the present results. As the large clade of mainly
European specimens (Figs. 1, 2) corresponds to the typical morphology of D. scoparium (cf. Hedends
& Bisang 2004), we consider it to represent D. scoparium s. s. The fact that some specimens from
North America and East Asia are included in this clade coincides with the wide distribution of D.
scoparium. A larger sampling from outside Europe is, however, necessary for more solid conclusions
on the total distribution and frequency of D. scoparium s. s. in the different continental areas.

The other specimens from North America and East Asia originally identified as D. scoparium
(cf. Appendix 1; Fig. 2) differ from the plants in the D. scoparium s. s. clade in having generally
narrower, linear leaves ending in an acuminate to setaceous apex. The distal abaxial side of the
costa has at least four strongly serrulate lamellae, the leaf margins are strongly serrulate, and the
lamina cells are finely porose. A BLAST search of the respective sequences did not correspond to
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any North American or Asian accession available on GenBank, including D. bardunovii Tubanova
& Ignatova, which was recently described from Buryatia, south-central Siberia, based on
morphological characters and nrITS sequences (Tubanova and Ignatova 2011). The sequenced
specimens from Japan, South Korea, and Russia morphologically resemble two closely related East
Asian species, D. japonicum and D. lorifolium; however, morphological differences between these
species and D. scoparium are rather subtle. The latter differs from the two Asian species mainly by
a broader leaf base and a percurrent instead of excurrent costa (Gao & He 1999). In addition,
Noguchi (1987) mentions that the main difference between D. japonicum and D. scoparium is found
in their habitat preference, with the former growing on humus in shady habitats and the latter
in sunnier and drier places. The morphological characters distinguishing the two Asian species
from each other are mainly based on the sporophyte, namely inclination of the capsule as well
as size and papillosity of the spores (Gao & He 1999). The only gametophytic difference is the
canaliculate (D. lorifolium) versus keeled (D. japonicum) leaf apex (Table 1). Considering these slight
differences and the fact that two further specimens from Japan were originally identified as D.
japonicum, we provisionally conclude that the specimens from Japan and South Korea belong to D.
japonicum. The Russian specimens probably represent D. cf. lorifolium as judged from the presence
of suberect capsules in the two fertile specimens sequenced (Ru_6 and Ru_7). The sequenced North
American specimens, in contrast, fall within the range of morphological variation of D. scoparium.
Their taxonomic status and delimitation from D. japonicum and D. cf. lorifolium needs to be assessed
based on further molecular and morphological analyses of a larger sampling of North American
and Asian specimens, which may reveal further “cryptic” molecular lineages as well.

Because bryophytes have limited numbers of morphological characters, which are in addition
under strong environmental constraints (e.g. Briggs 1965; Vanderpoorten & Goffinet 2006),
it is difficult to identify key characters defining species. This is especially true in a genus with
polymorphic species such as Dicranum. Molecular phylogenetic analyses may allow species to be
circumscribed even when morphological characters are ambiguous (e.g. Vanderpoorten & Goffinet
2006; Stech et al. 2011; Stech et al. 201 3). However, it is necessary to re-address the morphology
in light of the molecular phylogenetic reconstructions to infer whether morphologically variable but
molecularly well-supported species can be identified with certainty by morphological characters
(e.g. Sukkharak et al. 2011). In the present study, molecular analyses provided useful support
for defining part of the species of the D. scoparium complex as well as D. majus, which allowed
reconsideration of the most reliable gametophytic characters to identify them (Table 1). On the
other hand, the molecular data raised questions concerning the circumscription of D. bonjeanii,
D. japonicum, and D. lorifolium, species for which the morphological definition was also limited.
Further data are necessary to reach taxonomic conclusions for these species and to finally decide
how many taxa should be distinguished in the D. scoparium complex. Nevertheless, the present
approach is promising for the study of other taxonomically difficult complexes of closely related
species in bryophytes.









Chapter 3

Species delimitations in the Dicranum acutifolium complex
(Dicranaceae, Bryophyta) using molecular markers

A. S. Lang D. Tubanova & M. Stech

Journal of Bryology, in press

ABSTRACT

Because of their morphological plasticity and broad geographic distribution, the taxonomy of
Dicranum is difficult. The circumscription of the different species included in the Dicranum acutifolium
complex is poorly understood and taxonomic confusions are frequent. The present study extends
earlier ITS-based phylogenetic reconstructions of the D. acutifolium complex by analysing five
additional chloroplast markers (trnT-rps4, trnl-F, psbA-trnH, rps19-rpl2, rpoB) together with ITS
of a larger taxon sampling. The phylogenetic analyses delimit Dicranum acutifolium (Lindb. &
Arnell) C.E.O Jensen, D. bardunovii Tubanova & Ignatova, D. brevifolium (Lindb.) Lindb., and D.
septentrionale Tubanova & Ignatova, which together form the D. acutifolium complex, and confirm
that D. pseudoacutifolium is synonymous with D. flexicaule. Dicranum septentrionale was known so
far from across Russia but also occurs in Scandinavia, where it was probably overlooked due to
morphological resemblance with D. brevifolium. The problem of mixed collections for identification is
exemplified by the holotype of D. bardunovii, which contains also individuals of the morphologically
most similar D. acutifolium according to the molecular data. Morphometric analyses support the
differentiation of the D. acutifolium complex. Furthermore, ordination analyses point to a continuous
range of variation among species within the D. acutifolium complex, especially due to the larger
variation of D. septentrionale.

INTRODUCTION

Dicranum Hedw. (including Orthodicranum (Bruch & Schimp.) Loeske) is a large moss genus of
more than 90 accepted species (Frey & Stech 2009; Tropicos.org) with a predominantly Holarctic
distribution. Several Dicranum species are known to be morphologically plastic (Hedends & Bisang
2004; Ireland 2007), and their circumscriptions remain ambiguous as neither a thorough worldwide
revision nor a complete phylogenetic analysis of Dicranum is available yet. Nevertheless, a number
of recent studies tackled certain groups of Dicranum species based on molecular data, namely
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the D. scoparium Hedw. complex (Lang & Stech 2014), arctic Dicranum species (Lang et al. 2014),
Dicranum species with fragile leaves (Ignatova & Fedosov, 2008) or the D. acutifolium (Lindb. &
Arnell) C.E.O. Jensen and D. fuscescens Turner complexes (Tubanova et al. 2010; Tubanova &
Ignatova 2011). The former two studies concluded that (closely related) Dicranum species can be
best delimited based on combined analysis of five chloroplast markers and the nuclear ribosomal
ITS region. Inferences on the D. acutifolium complex, in contrast, were based on ITS only and need
to be re-evaluated based on a larger marker sampling.

The Dicranum acutifolium complex is part of Dicranum sect. Spuria Bruch & Schimp. (sensu
Nyholm, 1987) and centred around two circumarctic — alpine species, D. acutifolium and D.
brevifolium (Lindb.) Lindb. They were first described as varieties of D. bergeri Blandow (Lindberg &
Arnell 1890) or D. muehlenbeckii Bruch & Schimp. (Lindberg 1865), respectively, the former being
an erroneous name for D. undulatum (cf. Hedends & Bisang 2004). Otnyukova (2007) described a
new species, D. pseudoacutifolium Otnyukova, which differed from D. acutifolium and D. brevifolium
in morphological characters such as the absence of bulgings above cell walls, non-porose lower
leaf cells, and inner perichaetial leaves abruptly contracted into a subula. However, molecular
data revealed that the type specimen of this species corresponded to a weak form of D. flexicaule
Brid., with whom it has been consequently synonymized (Tubanova et al. 2010), while other D.
pseudoacutifolium specimens had identical ITS sequences with D. acutifolium (Tubanova et al. 2010).
On the other hand, two newly identified molecular lineages were described as species, i.e. D.
septentrionale Tubanova & Ignatova and D. bardunovii Tubanova & Ignatova (Tubanova et al. 2010;
Tubanova & Ignatova 2011). These two species are morphologically very close to D. brevifolium,
but also share several features with D. acutifolium. However, neither the newly described species
nor D. brevifolium or D. acutifolium formed strongly supported clades based on ITS sequences only.
The Dicranum acutifolium complex, in line with Tubanova et al. (2010), thus comprises four species, D.
acutifolium, D. brevifolium, D. bardunovii and D. septentrionale. It is characterised by a combination
of morphological characters including leaves that are keeled distally with the blade shaped like
a pair of tongs in cross-section as well as thick-walled lamina cells that are subquadrate to short
rectangular, sometimes irregularly shaped above and elongated and porose below.

This study extends the phylogenetic reconstructions of Tubanova et al. (2010) and Tubanova
& Ignatova (2011) by analysing five chloroplast markers (trnT-rps4, trnL-F, psbA-trnH, rps19-rpl2,
rpoB) in combination with ITS of a larger taxon sampling. Based on the molecular data and a
re-evaluation of morphological characters, we aim to (i) add further molecular support to the
circumscription of the D. acutifolium complex, (ii) clarify species circumscriptions in the complex,
and in particular evaluate the taxonomic status of D. bardunovii and D. septentrionale, and (iii)
investigate the value of morphological characters used to distinguish the species of the complex.

MATERIALS AND METHODS

Sampling— A total of 67 Dicranum specimens were sampled (Appendix 1). The sampling
included 15 specimens of which ITS sequences had already been generated by Tubanova et al.
(2010) and Tubanova & Ignatova (2011), 12 specimens newly sequenced for all six markers
employed here (see below), and 40 specimens of which chloroplast and ITS sequences were
generated for previous studies (Lang & Stech 2014; Lang et al. 2014; Stech, 1999; Stech et al.
2006). We studied 29 specimens of sect. Spuria: six originally identified as D. acutifolium, 13
D. brevifolium, two D. septentrionale, three D. bardunovii (including the holotype, from which two



plants were sequenced separately), one D. drummondii, and four D. undulatum. Eight Dicranum
species were included as representatives of other sections than sect. Spuria: four specimens of D.
spadiceum J.E. Zetterst. (sect. Muehlenbeckia Peterson), three D. elongatum Schleich. ex Schwagr.
(sect. Elongata Hag.), five D. fuscescens and 11 D. flexicaule (sect. Fuscescentiformia Kindb.), seven
D. majus Turner, two D. nipponense Besch., two D. scoparium, and three D. bonjeanii De Not. (all
sect. Dicranum Hedw.). Dicranum muehlenbeckii (sect. Muehlenbeckia) could not be included in the
molecular analyses because of unsuccessful DNA amplification. However, two specimens were
included in the morphological analyses. Previous studies resolved Holomitrium Brid. as sister group
of Dicranum (La Farge et al. 2002; Stech et al. 2006). Therefore, four samples, one H. crispulum
Mart. and three H. arboreum Mitt., were chosen as outgroup representatives (Appendix 1).

DNA extraction, amplification and sequencing— The greenest part of single gametophyte
shoots was selected for DNA extraction. After cleaning the shoot under a binocular, total DNA was
extracted using the NucleoSpin® Extract Il Kit (Macherey-Nagel, Disren, Germany). Six markers
employed to delimit closely related Dicranum species in Lang & Stech (2014) and Lang et al.
(2014) were amplified and sequenced: five chloroplast regions (partial rpoB gene, trnH_  _-psbA,
rps19-rpl2, and rps4-trnT . intergenic spacers, and ftrnL ,, intron / trnL , ,-trnF_,, intergenic
spacer) and the nuclear ribosomal nrITS1-5.8S-ITS2 region. PCR amplifications were performed
as described in Lang & Stech (2014). All PCR products were purified and sequenced at Macrogen

Inc. (www.macrogen.com). GenBank accession numbers of all sequences are listed in Appendix 1.

Alignment and phylogenetic reconstruction— Alignment and phylogenetic reconstruction

Sequences were aligned in Geneious v6.1.6 (Biomatters, available from www.geneious.com)
using 65% similarity matrix costs, and manually adjusted. One short hairpin-associated inversion
in the trnH-psbA spacer, which can flip at the population level and may significantly reduce
phylogenetic structure if undetected (Quandt & Stech 2004; Borsch & Quandt 2009; Whitlock et
al. 2010), was positionally separated in the alignment and not coded as indels.

The best substitution model was selected for each locus according to the Akaike information
criterion (AIC) using MrModeltest (Posada & Crandall, 1998) executed through PAUP* 4.0b10
(Swofford 2002). Gaps were coded as informative by simple indel coding (SIC) (Simmons &
Ochoterena 2000) as implemented in SeqState (Miller 2004). To check for incongruence,
phylogenetic reconstructions based on chloroplast and nuclear sequences were visually compared.
In addition, an incongruence length difference test (ILD, Farris et al. 1994) as implemented in PAUP*
was performed with 100 replicates. As both visual inspections and the ILD test indicated that the
plastid and nuclear tree topologies were congruent (p=0.03), the two datasets were combined for
analysis in a total evidence approach.

Phylogenetic inferences were based on maximum parsimony (MP), maximum likelihood (ML)
and Bayesian inference (Bl) analyses, with and without indels coded by SIC included. Heuristic
searches under parsimony were performed in PAUP* using simple sequence addition with 1000
replicates and tree bisection-reconnection (TBR) branch swapping. The nucleotide matrix was divided
into three partitions for ML and Bl, namely the non-coding chloroplast markers (rps4-trnT, trnl-
trnF, trnH-psbA, rps19-rpl2), the chloroplast gene rpoB, and the nriITS region. Maximum likelihood
analyses were carried out with RAXML v.7.2.6 (Stamatakis 2006) employing the graphical user
interface raxmlIGUI v.0.93 (Silvestro & Michalak 2012). As implemented in RAXML, the GTR model
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of nucleotide substitution with [ model of rate heterogeneity was used for all partitions. Bootstrap
searches under ML were done using the thorough bootstrap heuristics algorithm with 20 runs and
1000 replicates. Bayesian analyses were run on the CIPRES science gateway (Miller et al. 2010).
Bayesian posterior probabilities were calculated based on the Markov chain Monte Carlo (MCMC)
method, using MrBayes v3.2.1 x64 (Huelsenbeck & Ronquist 2001; Ronquist & Huelsenbeck 2003),
with MrModeltest best fit models HKY + [ for the non-coding chloroplast markers and HKY + |
for rpoB and nrITS. Nucleotide and indel data were treated as separate and unlinked partitions,
employing the restriction site model (‘F81’) for the indel matrix as recommended by Ronquist et
al. (2005). The a priori probabilities supplied were those specified in the default settings of the
program. Two runs with four chains were run simultaneously (11 X 10° generations), with the
temperature of the single heated chain set to 0.5. Chains were sampled every 1000 generations
and the respective trees written to a tree file. Fifty percent majority rule consensus trees and
posterior probabilities of clades were calculated by combining the four runs and using the trees
sampled after the chains converged. Trace plots generated in Tracer v1.5 (Rambaut & Drummond
2007) were used to check for convergence of the runs (plateaus of all runs at comparable
likelihoods) and to infer the ‘burnin’, which was set to 25%.

Morphological analysis— A total of 47 specimens were included in the morphological analyses:
all six D. acutifolium, five D. brevifolium, three D. bardunovii and ten D. septentrionale as well as two
D. scoparium, two D. nipponense, three D. bonjeanii, three D. majus, four D. undulatum and the four
D. spadiceum, plus three additional D. drummondii and two D. muehlenbeckii specimens that could
not be sequenced. Thirty-four gametophytic characters were scored according to their relevance
for species identification (Nyholm, 1987; Hedends & Bisang 2004; Tubanova et al. 2010). As
none of the examined samples carried sporophytes, sporophytic characters were not included
in the statistical analyses. Presence or absence of character states was scored for each sample
(Appendix 2). Morphological scoring was made under a light microscope on three branch leaves
removed from the upper part of the stem, excluding the uppermost part. Three additional leaves
were removed and used for scoring characters of costa cross-section. Multistate characters were
artificially separated into binary characters for analytical reasons.

A multivariate approach was used to investigate the phenotypic affinities between the
taxa of the D. acutifolium complex and other putatively closely related species. Morphological
discontinuities were first explored through a hierarchical cluster analysis based on Jaccard
distances and the complete-linkage method as clustering strategy using the vegan package
(Oksanen et al. 2013) in R 2.15 (R Development Core Team 201 3). Pearson’s correlation coefficient
was calculated to evaluate the optimal number of clusters. To further explore the morphological
similarity of species, we performed an ordination with nonmetric multidimensional scaling (NMDS;
Kruskal 1964) applying the metaMDS function of vegan with its default arguments. We used the
Jaccard matrix to produce a five dimensional ordination (i.e., k=5) and plotted against species

<— FiG. 1. Single optimal maximum likelihood phylogenetic reconstruction inferred from the partitioned matrix for the non-coding
chloroplast loci( trnT-rps4- trnL-F- trnH-psbA- rps19- rpl2), the coding region rpoB and nrITS, including indels coded by simple indel coding
(SIC). The default GTR+ I model was applied for all DNA partitions and F81 was employed for the indel matrix. Bootstrap analyses under
ML were done using the thorough bootstrap heuristics algorithm with 20 runs and 1000 replicates. Bl was obtained with the best fit models
HKY + [ for the first partition, and HKY + | for rpoB and nriTS and F81 for the indel matrix, after 11,000,000 generations with two runs
and four chains and the temperature of the single heated chain set to 0.5. Trees were sampled every 1000 generations and a burnin was
set to 25%. Four specimens of Holomitrium were used as outgroup representatives. Support values (MP and ML BS >70%, Bl PP >0.95) are
indicated at the branches. Grey boxes delimit species of the D. acutifolium complex.
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brevifolium and D. septentrionale were resolved in
well-supported clades (=289% BS, PP 1; Fig. 1). Dicranum bardunovii was less strongly supported
(70% ML BS, PP 0.99), whereas D. acutifolium only received 71% BS in the ML analysis. Relationships
among these four lineages remained ambiguous. Dicranum drummondii, which shares common
morphological characters with species of the D. acutifolium complex, was clearly separated from
the latter as well as from D. undulatum (100% BS, PP 1). One of the two plants of the holotype of
D. bardunovii corresponded to D. acutifolium. Furthermore, eight of the 13 samples identified as
D. brevifolium corresponded to D. septentrionale and only five were attributed to D. brevifolium.
These confusions were due to mis-identifications of the samples, as the species are readily confused
morphologically.

The D. acutifolium complex was resolved as sister group to the D. scoparium complex, but
relationships between these two complexes as well as D. majus, D. elongatum and the D. fuscescens
complex (D. flexicaule and D. fuscescens) remained unsupported.

The cluster analysis of morphological characters (Fig. 2) divided the analysed specimens
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into five optimal clusters (Pearson’ s correlation coefficient r=0.769). Dicranum muehlenbeckii, D.
drummondii and D. undulatum were grouped in clusters 1, 2 and 3, respectively. Cluster 4 included
all the specimens of the D. scoparium complex plus D. majus and D. spadiceum, while all four species
from the D. acutifolium complex grouped in cluster 5. Within the cluster of the D. acutifolium complex,
three subclusters corresponded to D. acutifolium, D. bardunovii and D. brevifolium, respectively,
whereas D. septentrionale did not form a homogeneous group, in contrast to the molecular tree.
SE_11, SE_12, SE_16 and 25 formed a group that was most similar to D. bardunovii, SE_13,
SE_14, SE_17, and FIN_1 formed a group that was most similar to D. brevifolium and one sample
(23) clustered with D. brevifolium. Furthermore, both samples from the holotype of D. bardunovii
(1 and 1_lI) were situated in different subclusters, but sample 1 was not part of the D. acutifolium
cluster, in contrast to the molecular tree.

The five clusters identified in the cluster analysis were best distinguishable by the first three
axes of the NMDS scatterplot (Fig. 3; stress value= 0.033, nonmetric fit R?=0.999, linear fit
R?=0.991). While the specimens included in the D. acutifolium complex formed a first group with
negative values on axis one, the specimens of the D. scoparium complex, plus D. spadiceum and D.
majus formed a second group with positive values. Dicranum undulatum, as well as D. muehlenbeckii
and D. drummondii, was plotted between group one and two, with the former in the vicinity of
group one. While axis two further allowed a clear distinction of D. muehlenbeckii (Fig. 3A), axis
3 confirmed the separation of D. undulatum from the D. acutifolium complex and the distinction of
D. brevifolium, D. acutifolivm, D. bardunovii (Fig. 3B). Although D. septentrionale was differentiated
by axis 1 and 2, its similarity with D. brevifolium and D. bardunovii was displayed by axis 3.
The differentiation among species was supported by the ANOSIM (R= 0.8867; p=0.001, 999
permutations).

DiscussioN

Both the present molecular phylogenetic reconstructions (Fig. 1) as well as the morphological
analyses (Fig. 2) support the current circumscription of the D. acutifolium species complex, which
comprises D. acutifolium, D. bardunovii, D. brevifolium, and D. septentrionale. Morphologically
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all four species together are characterised by incrassate lamina cells that are parenchymatous
in the upper half of the leaf, acuminate and serrulate to serrate leaf apices, and a keeled
upper leaf with incurved margins, resulting in a tong-shaped transverse section. The molecular
data furthermore supports the conclusion of Tubanova et al. (2010) that D. pseudoacutifolium is
synonymous with D. flexicaule (samples 13 and 15 in Fig. 1). Although supraspecific relationships in
Dicranum remain largely unsupported based on the present molecular data (cf. also Lang & Stech
2014), and molecular relationships of D. muehlenbeckii await further study, no close relationship
of the D. acutifolium complex with the other included species of sect. Spuria, D. drummondii and
D. undulatum, nor with D. fuscescens (Fig. 1) and D. muehlenbeckii (Figs. 2, 3) are indicated. The
latter two species share certain morphological characters with D. acutifolium and D. brevifolium,
such as bulging cell walls, quadrate apical cells and slightly porose basal cells (e.g. Nyholm 1954,
1987; Ireland 2002), but are easily differentiated from the species of the D. acutifolium complex
by their leaves not tong—shaped in cross section, thin lamina cell walls, and leaf margins serrate
in the distal half. Despite its larger size, keeled leaf and the absence of bulging cell walls, D.
drummondii is sometimes confused with D. acutifolium because of its flexuose leaves in dry state
and irregularly shaped upper lamina cells (Ireland 2007; Nyholm 1987). Dicranum undulatum and
D. acutifolium have both straight leaves that have projecting upper cells at back. However, the
former has transversely undulate leaves that narrow into an obtuse apex, whereas the leaves of D.
acutifolium end in a subulate point.

The existence of numerous intergrading forms occurring among the species of the D.
acutifolium complex has caused much taxonomic confusion and led to frequent misidentifications.
Their distinction is based on few subtle gametophytic characters (Table 1), and deviating forms
render morphological identification difficult (Ireland 2002, 2007) as exemplified by the sample
1 of D. acutifolium or 23 of D. septentrionale (Figures 2, 3). Furthermore, herbarium collections of
D. brevifolium were frequently found under different names, such as D. drummondii, D. flexicaule,
or D. undulatum (Ireland 2002, Tubanova et al. 2010; Tubanova & Ignatova 2011). At the
molecular level D. acutifolium, D. bardunovii, D. brevifolium and D. septentrionale seem more clearly
distinguishable (Fig. 1), although the respective clades receive different statistical support, with
D. brevifolium and D. septentrionale being well supported in all analyses, whereas D. acutifolium
and D. bardunovii receive (lower) support only in part of the analyses. The molecular data also
helped renaming misidentified specimens within the D. acutifolium complex, since a number of
specimens identified as D. brevifolium were resolved in the clade of the D. septentrionale (Fig.
1). Dicranum septentrionale is a recently described species defined by few characters that were
previously attributed to the morphological variation of D. brevifolium (Table 1). Nonetheless, the
morphological characters frequently intergrade with D. bardunovii or D. brevifolium (Fig. 2, 3).
According to the present results, D. brevifolium is characterised morphologically by tong-like leaf
apices, elongated basal cells that are well differenciated from the median one and generally not
porose, quadrate upper cells and rugose dorsal surface of the costa. In contrast, D. septentrionale
is best differentiated by projecting lamina cells, especially at the leaf apex, elongated basal cell
that gradually become quadrate, and irregularly shaped in the upper part of the leaf and a
generally smooth dorsal epidermis. Furthermore, the distributions and ecological preferences of
both D. brevifolium and D. septentrionale are incompletely known or misunderstood, considering that
further D. brevifolium collections may appear to belong to D. septentrionale. While D. septentrionale
was known so far from across Russia (Fig. 4), our study shows that its distribution range extends to
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Fic. 4. Geographical distribution of Dicranum septentrionale according to collections studied in Tubanova et al. (2010) (filled blue
dots) and the present study (empty red dots).
Scandinavia. This indicates that D. septentrionale has a Eurasian or possibly Holarctic distribution.
In addition, the herbarium material we examined suggests that D. septentrionale could be a boreo-
montane species, whereas D. brevifolium would be a (sub)arctic-alpine species, as suggested by
previous studies (Amann et al. 1918; Dierssen 2001). A morpho-molecular re-identification of
further specimens, including D. brevifolium from North America, is needed to delimit the distribution
patterns and ecological preferences of D. brevifolium and D. septentrionale with more confidence.

Another part of the confusion between the species of the D. acutifolium complex may stem
from the presence of mixed collections. A striking example is the holotype of D. bardunovii,
which contains also individuals of the morphologically most similar D. acutifolium according to the
molecular data (samples 1 and 1_lI, Fig. 1). Not only are the morphological differences between
D. acutifolium and D. bardunovii small (Table 1, Figs. 2-3), D. bardunovii also shows morphological
variation departing from the holotype description. This is the case in the sequenced specimen 1,
which resembles D. septentrionale by the presence of projecting cells in the lamina, the coloured
alar cells and non porose, quadrate to elongated median lamina cells. Morphologically similar
species growing in mixed cushions is not uncommon in Dicranum. For example, collections containing
D. scoparium and D. bonjeanii have been found in locations where both species occurred also
separately (own observations). Environmental conditions have a strong influence on morphological
characters, especially in extreme conditions (Hedends et al. 2006), altering also typical characters.
The distinction of closely related species is then even more difficult. Additionally, dwarf males
growing on female stems (pseudomonoicy) are found both in D. brevifolium and D. acutifolium
and have been seen in one D. bardunovii specimens (Tubanova & Ignatova 2011) a number of
morphologically distinct specimens were revealed. They are similar to D. acutifolium (Lindb. &
Arnell. Whether hybridisation, a process that affects also the morphology, occurs in mixed patches
is still unknown. The present molecular data do not indicate any hybridisation for D. acutifolium and
D. bardunovii, however, the absence of support for the D. acutifolium complex suggest that such a
process might have occurred. The use of other molecular methods and more variable markers could
be useful to understand the species dynamics at population level.

In line with a number of recent studies (e.g. Sukkharak et al. 2011; Carter 2012; Medina et
al. 2012; Stech et al. 2013; Lang & Stech 2014) the present study displays the importance of
molecular data for clarifying species circumscriptions, resolving taxonomical issues and for the re-
evaluation of morphological characters in bryophytes and Dicranum in particular.









Chapter 4

DNA barcoding of Arctic bryophytes — an example from
the moss genus Dicranum (Dicranaceae, Bryophyta)
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ABSTRACT

The identification of bryophytes from the Arctic is often difficult due to deviating morphologies
under the extreme environmental conditions. This is especially true for species-rich and taxonomically
complex genera, such as the moss genus Dicranum. DNA barcoding is expected to improve the
identification of Arctic bryophyte species, but the optimal combination of barcoding markers for
mosses in general, especially for delimiting closely related species, is still under discussion. In this

paper, we test the discrimination capacity of six potential barcode markers (rps4-trnT _ , trnl , -
trnF

oanr TMMH o-psbA, rps19-rpl2, rpoB, nrITS1-5.83-ITS2) based on phylogenetic reconstructions
of 30 Dicranum samples from Spitsbergen (Svalbard, Norway) and reference samples from all
ten Dicranum species confirmed for the Svalbard archipelago and six additional Arctic Dicranum
species. All 16 species (possibly except D. fuscescens), were distinguishable with bootstrap support
>70% based on the combined sequence data, but none of the individual markers could delimit all
included species. All Svalbard collections could be readily assigned to five species, D. acutifolium,
D. elongatum, D. laevidens, D. majus, and D. spadiceum, respectively. It is concluded that DNA
barcoding improves species identification of Arctic Dicranum plants, but that a combination of
several markers is necessary in order to obtain reliable identification results, with the single loci
ITS1, trnl-F and rps4-trnT being the most promising regions.

INTRODUCTION

Bryophytes comprise three different phylogenetic lineages of land plants, namely liverworts,
hornworts, and mosses (e.g. Qiu et al. 2006). Of these, liverworts and mosses play an essential
role in Arctic terrestrial ecosystems and constitute a major component of different types of tundra
vegetation (e.g., Callaghan et al. 2004; Lang et al. 2012; Longton 1997). The Arctic bryoflora
comprises a considerable diversity of approximately 700 species (Longton 1988; Frisvoll &
Elvebakk 1996; Afonina & Czernyadjeva 1995; Konstantinova & Potemkin 1997).
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Bryophytes, especially mosses, have been widely employed in studies of ecosystem processes
and organismal interactions in (sub-)Arctic environments (e.g., Alsos et al. 1998; Gordon et al.
2001; Gornall et al. 2007; Jasmin et al. 2008; Krab et al. 2008; van der Wal & Brooker 2004).
The Arctic has been divided into bioclimatic regions, where the High Arctic is characterized by
an open herbaceous vegetation with some dwarf-shrubs on mineral soils, while the Low Arctic
generally consists of a closer herbaceous vegetation, composed of dwarf and low shrubs on peat-
rich soils (Walker et al. 2005). Biodiversity-based investigations of Arctic ecosystem processes,
however, are still severely hampered by insufficient knowledge of bryophyte taxonomy and by
the ability of species recognition based on morphological characters. In response to the extreme
environmental conditions bryophytes display unusual growth forms and deviant gametophytic
characters in the (High) Arctic. This plasticity makes morphological identification to species level
difficult or even impossible (e.g., Buryovd & Shaw 2005; Frisvoll & Elvebakk 1996; Hesse et al.
2012). This is especially true for species-rich and taxonomically complex genera such as Bryum
Hedw., Dicranum Hedw. and Schistidium Brid. (e.g., Steere 1978; Hesse et al. 2012). Consequently,
ecological studies have largely been limited to a few easily distinguishable species or genus-
level identifications (e.g., Okitsu et al. 1998), or treated bryophytes as a single category without
distinction of species (e.g., van der Wal et al. 2001). Sometimes bryophytes are even grouped with
lichens and fungi as the outdated group of ‘cryptogams’ (e.g., Hudson & Henry 2010; Wahren et
al. 2005; Epstein et al. 2004). The development of new identification tools to treat bryophytes in a
more comprehensive way would surely increase the significance of ecological studies in the (High)
Arctic, especially with respect to the potential of bryophytes for investigating the impact of global
climate change (Tuba et al. 2011).

DNA barcoding is a molecular tool for species identification based on species-specific
sequence differences in a short, standardized DNA region. In contrast to this original idea, however,
barcoding in land plants (including bryophytes) is supposed to be based on one or two core
markers plus additional information from other DNA regions where necessary (e.g., Hollingsworth
et al. 2009, 2011). In bryophytes, especially mosses, the plastid markers recently proposed for
barcoding of land plants (CBOL Plant Working Group 2009; Kress et al. 2005) either tend to be
short (psbA-trnH spacer; Stech & Frey 2008; Stech & Quandt 2010), have different discrimination
capacity at the species level (rbcl; Liv et al. 2010; Stech & Quandt 2010), or need more study
concerning primer design and amplification strategy (frnK/matK, e.g., Bell et al. 2012). Although
the optimal combination of barcoding markers for bryophytes is still under discussion (e.g., Liuv et
al. 2010; 2011; Bell et al. 2012; Hassel et al. 2013; Stech et al. 2013), several other molecular
markers have already shown to be useful for inferring species delimitations and identifying species
in bryophytes (e.g., Bell et al. 2012; von Crdutlein et al. 2011; Draper & Hedends 2009; Stech et
al. 2011, 2013).

Dicranum (Dicranaceae) is a large genus belonging to the second largest subclass of mosses,
Dicranidae. It comprises ca. 90 species essentially found in the Holarctic (Crosby et al. 1999; Ireland
2007), including about 30 species in the boreo-arctic region, of which ten species were accepted
for Svalbard (Frisvoll & Elvebakk 1996). Several Dicranum species show a high morphological
variability (Hedends & Bisang 2004; Hedends et al. 2006; Smith 2004; Lang & Stech 2014),
which renders their identification challenging, in particular in plants (Hedends et al. 2006; pers.
obs.). Previous phylogenetic studies revealed low sequence divergence in commonly employed
plastid markers (La Farge et al. 2002; Stech et al. 2006). The nuclear ribosomal ITS region allowed
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Fic. 4. Comparison of maximum intraspecific versus minimum interspecific divergence distances for Dicranum species pairs with more
than one specimen sequenced. Genetic distances have been calculated using a K2P model of sequence evolution for trnT-rps4, trnl-F, trnH-
psbA, rps19-rpl2, rpoB, all chloroplast markers combined (CPall), ITS and its partitions ITS1 and ITS2.

species identification in a study of Russian Dicranum species albeit with low support (Tubanova &
Ignatova 2011; Tubanova et al. 2010). Most recently however, Lang & Stech (2014) showed that
closely related species of the Dicranum scoparium Hedw. species complex were best resolved by
combining five plastid regions and the nuclear ribosomal ITS region.

In the present study we aim to test how well Dicranum collections from the High Arctic
archipelago of Svalbard can be identified to species level based on a DNA barcoding approach.
Inferences are based on molecular phylogenetic reconstructions using chloroplast (rpoB, trnH-psbA,
trnl-trnF, rps4-trnT, rps19-rpl2) and nuclear ribosomal ITS sequences from Svalbard and reference
collections. The reference sequences were generated from well-identified, morphologically typical
specimens from temperate to boreal regions. Furthermore, we examine the species discrimination
efficacy of the six markers individually based on phylogenetic inference and comparison of
maximum intraspecific versus minimum interspecific genetic distances.

MATERIALS AND METHODS

Sampling— According to the most recent checklist of the bryophytes of Svalbard (Frisvoll
& Elvebakk 1996), 17 Dicranum species have been reported for the archipelago, of which ten
were accepted in the checklist (Dicranum acutifolium (Lindb. & Arn.) C.Jens., D. angustum Lindb., D.
elongatum Schleich. ex Schwagr., D. flexicaule Brid., D. fuscescens Sm., D. laevidens R.S. Williams,
D. majus Sm., D. scoparium Hedw., D. spadiceum J.E. Zetterst., and D. tauricum Sapjegin), and seven
were excluded due to erroneous identification (D. bonjeanii De Not., D. brevifolium (Lindb.) Lindb.,



D. fragilifolium Lindb., D. groenlandicum Brid., D. leioneuron Kindb., D. muehlenbeckii Bruch &
Schimp., and D. scottianum Turner ex Scott). DNA sequences of 52 reference specimens comprising
16 out of the 17 species were compiled from earlier studies (Lang & Naciri 2010; Stech 1999;
Lang & Stech 2014) or newly generated for this study (Appendix 1): Dicranum acutifolium (1
sample), D. angustum (5), D.brevifolium (2), D. bonjeanii (5), D. elongatum (1), D. flexicaule (7),
D. fragilifolium (1), D. fuscescens (3), D. groenlandicum (1), D. laevidens (1), D. leioneuron (3), D.
majus (6), D. scoparium (6), D. spadiceum (4), D. scottianum (2) and D. tauricum (4). The reference
specimens originated from temperate to boreal regions, generally displayed morphologies typical
for the respective species, and were mostly identified, or their identifications checked, by the
authors or L. Hedenés (Stockholm). Dicranum muehlenbeckii, however, could not be included in the
analysis because of unsuccessful DNA amplification. Thirty Dicranum specimens from Svalbard
(including one specimen already included in Lang & Stech, 2014) collected by the second and third
author in Adventdalen (Longyearbyen area), Colesbukta, and Kongsfjorden (Ny-Alesund area) in
2008-2010 were analysed (DNA numbers Dic_1644-Dic_1646, Dic_1648-Dic_1655, Dic_1659-
Dic_1673, Dic_1675-Dic_1677). The collection strategy was to collect as many morphotypes as
possible from the sampled areas. Four samples of Holomitrium Brid., one of H. crispulum Mart. and
three of H. arboreum Mitt., were chosen as outgroup representatives according to earlier molecular
phylogenetic reconstructions (La Farge et al. 2002; Stech et al. 2006). Voucher information and
GenBank accession numbers of the DNA sequences generated from the 30 specimens are listed in
Appendix 1. The nomenclature of Dicranum used in this study follows Hedends & Bisang (2004),
which corresponds to the accepted species in Tropicos (Tropicos.org) and The Plant List (2013),
except three species considered as synonyms in the latter two databases (D. angustum and D.
laevidens as synonyms of D. spadiceum and D. flexicaule as synonym of D. fuscescens).

Molecular marker selection— For this study, we sequenced five chloroplast regions, i.e., partial
rpoB gene, trnH_ -psbA and rps19-rpl2 intergenic spacers, and two parts of the frnS-F region,
namely rps4-trnT _  spacer and trnl-F (trnl ,, intron and trnl ,-trnF_,  spacer), and the nuclear
ribosomal nrITS1-5.8S-ITS2 region. Amplification and sequencing success as well as haplotype
diversity of the chloroplast markers were inferred for 54 Dicranum scoparium specimens by Lang
& Naciri (2010). Subsequently these markers provided, together with nrITS sequences, valuable
results in delimiting species of the Dicranum scoparium complex, based on a sampling of 111

Dicranum specimens (Lang & Stech 2014).

DNA extraction, amplification and sequencing— DNA was extracted from the dried leaves of a
single plant using the NucleoSpin® Extract Il Kit (Macherey-Nagel, Diren, Germany). Polymerase
chain reaction (PCR) was performed following Lang & Stech (2014). PCR products were purified
and sequenced at Macrogen Inc. (www.macrogen.com). GenBank accession numbers of all
sequences are listed in Appendix 1.

Alignment and phylogenetic reconstruction— Sequences were aligned in Geneious v6.1.6
(Biomatters 2010) using 65% similarity matrix costs, and manually adjusted. Gaps were treated
as missing data or coded as informative by a simple indel coding strategy (SIC) (Simmons &
Ochoterena 2000) as implemented in SeqState (Miller 2004). Short hairpin-associated inversions
in the trnH-psbA spacer were positionally separated in the alignment and not coded as indels.
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TasLe 1. Alignment length (Length), number of constant characters (Constant), variable characters (Variable), parsimony-informative characters (Parsi-info) and percentage of parsimony-

informative characters (% parsi-info) for nucleotide and indel matrices. Values were calculated from alignments of each marker with outgroup and ingroup only (ingr).

trnL-trnF psbA-trnH rps19-rpl2 rpoB ITS 1 ITS 2 ITS

trnT-rps4

ingroup ingroup ingroup ingroup ingroup ingroup ingroup

ingroup

16 16 14 16 16 16 16

15

Species

522 471 471 149 149 310 310 457 457 360 304 427 371 966 854

522

Length

498 432 436 136 138 292 299 441 443 287 274 369 348 821 798

485

Constant

Variable

char.

14 73 30 67 23 145 56

16

18

13

35

39

24

37

96 42

19

42

20

49

12

20 35 29

33

Parsi-info

10

10
59
37

14

% parsi- info

66
53

123

32

34

64

#indels

87

20

28

49

Parsi-info

Total parsi-

info

95

183

39

79

48

98

10

12

10

12

10

12

34

39

23

36

Numbers of constant, variable and parsimony-
informative sites were calculated for each locus
using PAUP* v4.0b10 (Swofford 2002).

Phylogenetic analyses
Parsimony (MP) optimality
maximum likelihood (ML) were performed on
every marker separately (including separate
analyses of ITST and ITS2) and the combined
markers (total evidence trees sensu Kluge 1989),
both with and without indels included. Before
combining markers, we tested for incongruence
by visual inspection of the separate trees and
by applying an incongruence length difference
test (ILD, Farris et al. 1994) as implemented in
PAUP* with 100 replicates.

MP analyses were performed using PAUP*.
Heuristic searches were performed with 100
replicates using random sequence addition,
one tree held at each step and tree bisection-
reconnection (TBR) branch swapping, saving up
to 10,000 trees. ML analyses were carried out
with RAXML v. 7.3.0 (Stamatakis et al. 2006)
employing the raxmlGUI v.0.93 interface
(Silvestro & Michalak 2012). The default

GTR+[" model was chosen for all markers.
Bootstrap analyses under ML were done using
the thorough bootstrap heuristics algorithm with
1,000 replicates.

Pairwise nucleotide distances
all sequences were calculated in PAUP* under
the Kimura 2-parameter (K2P) model for the
combined chloroplast dataset, ITS and all
partitions. Maximum intraspecific distances were
plotted against minimum interspecific distances
for all possible species pairs with more than one
specimen sequenced to infer the presence of a
barcoding gap (cf. Stech et al. 201 3).

using Maximum
criterion and

between

ResuLTs
Lengths of the sequenced chloroplast
markers within  Dicranum and Holomitrium

ranged from 509-521 nucleotides for rps4-trnT,
449-471 nt for trnL-F, 136-140 nt for trnH-



psbA, 309-310 nt for rps19-rpl2 and 457 nt for rpoB. The total plastid alignment comprised
1909 positions, of which 123 were variable, and 100 of the variable positions were parsimony-
informative. Simple indel coding yielded a total of 15 additional characters, of which 11 were
parsimony-informative. Hence, a total of 111 parsimony-informative characters resulted from the
plastid markers. Sequences length of nrITS1-5.8S-ITS2 ranged from 747-900 nt (747-839 within
Dicranum). The alignment comprised 1086 positions, of which 120 were removed from further
calculations due to ambiguous alignment. Of the 966 remaining positions, 145 were variable and 96
of the variable positions were parsimony-informative. Simple indel coding yielded 123 characters
of which 87 were parsimony informative. In total, 183 parsimony-informative characters resulted
from nriITS. Respective numbers of parsimony-informative characters per plastid marker and for
ITST and ITS2 separately are summarized in Table 1. The partitions with the most parsimony-
informative characters were ITS1 (13.61%) and ITS2 (9.84%)), followed by the chloroplast markers
trnl-F (7.43%) rps4-trnT (6.32%), trnH-psbA (6.04%), rps19-rpl2 (3.55%), and partial rpoB gene
(2.63%).

Maximum parsimony analyses with or without indels included resulted in most parsimonious
phylogenetic reconstructions with similar consistency indices (combined chloroplast: Cl 0.7306 versus
0.7159, ITS: Cl 0.7939 versus 0.8394), indicating only a slightly higher amount of homoplasy in
the indel characters in ITS. Both visual inspections of plastid versus ITS tree topologies and the ILD
test (p = 0.29) indicated that the two datasets were congruent and could be combined.

The single optimal ML tree of the combined analysis of all markers including indels is shown
in Fig. 1 (InL = -7188.5806). The optimal ML trees calculated from the combined chloroplast
markers versus ITS (InL = -3728.5203 and InL= -3159.2803, respectively) are shown in Figs.
2 and 3, with bootstrap support values (BS) from maximum parsimony and maximum likelihood
analyses. Separate clades of all 16 included Dicranum species were resolved in the combined
tree (Fig. 1) and the plastid marker tree (Fig. 2) according to the positions of the reference
specimens, except Dicranum fuscescens that was resolved as paraphyletic. The ITS tree (Fig. 3) was
less resolved and most clades were weakly supported. The D. leioneuron, D. majus, D. scottianum
and D. spadiceum clades received bootstrap support of >70% in all three phylogenetic inferences.
The D. acutifolium, D. elongatum, D. scoparium, and D. tauricum clades yielded high support in
the chloroplast and combined analyses, whereas the D. angustum, D. bonjeanii and D. brevifolium
clades were supported (=80% BS) in ITS and the combined tree. The D. flexicaule and D. laevidens
clades received high boostrap support (=78%) only in the combined analysis (Table 2). High
support in the combined trees was furthermore obtained for the sister group relationships of D.
elongatum + D. fragilifolium, D. flexicaule + D. fuscescens + D. scottianum, as well as D. bonjeanii +
D. scoparium + D. leioneuron of the D. scoparium complex. The Svalbard specimens clustered in five
clades, namely the D. acutifolium (5 specimens), D. elongatum (4), D. laevidens (7), D. majus (1) and
D. spadiceum (13) clades (Figs. 1-3).

Clades with more than one sequence were generally weakly supported in each of the seven
single partitions (Table 2). Moreover, only six clades were recovered in at least four partitions,
namely the D. leioneuron, D. majus, D. scoparium, D. scottianum, D. spadiceum and D. tauricum clades.
ITS1 recovered the most clades with statistical support > 70% BS, whereas trnH-psbA recovered
only the D. elongatum clade with strong bootstrap support (84/ 86%).

Genetic distances were generally small in all markers. The ranges of intraspecific versus interspecific
pairwise genetic distances overlapped for all markers, except in the combined chloroplast dataset
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(Table 3). Tables of all nucleotide distances measured are available on request. Furthermore, the
comparison of maximum intraspecific versus minimum interspecific genetic distances (Fig. 4) showed
greater intraspecific than interspecific distances for a number of pairwise comparisons in every
partition (data points below the 1:1 line). Therefore, no clear barcode gap was obtained for all
pairwise comparisons, i.e. none of the markers was powerful enough to discriminate all studied
species.

DiscussioN

DNA barcoding in Dicranum and implications for mosses in general— All Dicranum species
included in this study except D. fuscescens were distinguishable based on the combined sequence
data of five chloroplast markers and nrITS, with bootstrap support >70% for all clades of species
represented by more than one sample (Fig. 1, Table 2). However, an increased sampling of the
species represented in this study by one or few specimens would be necessary to confirm their
monophyly and infer intra- versus interspecific sequence variation with more confidence. The
present results support our earlier study focusing on closely related species within the D. scoparium
complex (Lang & Stech 2014), namely the close relationship between D. bonjeanii and D. scoparium
and the separation of D. majus from the D. scoparium complex. In addition, D. leioneuron, which was
not included in Lang & Stech (2014), is resolved as a member of the D. scoparium complex here.
As the molecular clades of these species coincide with the morphological species circumscriptions,
we conclude that the sequenced entities are in fact separate species. Dicranum flexicaule is
morphologically very similar to D. fuscescens and frequently regarded as a variety or a form
of the latter (Ireland 2007; Ménkemeyer 1927; Podpéra 1954; Savicz-Lyubitskaya & Smirnova
1970; The Plant List 2013). However, several other authors accept D. flexicaule as a separate yet
doubtful species (Bellolio-Trucco & Ireland 1990; Hedends & Bisang 2004). The present molecular
data support a close relationship of D. flexicaule with D. fuscescens, and in addition D. scottianum,
but analyses of a larger number of specimens or additional markers are necessary to resolve their

relationships with confidence and conclude about the taxonomic status of D. flexicaule.
Each individual locus provided insufficient variability to distinguish all sequenced species
(Table 2, Fig. 4). The ITS region as well as the chloroplast markers trnL-F and rps4-trnT showed the
highest species discrimination capacity in terms of statistical support, in accordance with previous
studies (e.g., La Farge et al. 2002; Herndndez-Maqueda et al. 2008; Hollingsworth et al. 2009).
However, the D. elongatum clade was only supported by psbA-trnH and none of the markers
delimited D. laevidens (Table 2). The psbA-trnH spacer possessed a relatively high proportion of
parsimony-informative characters in Dicranum, as in other moss species (Liu et al. 2010; Hassel et
al. 201 3), although the resulting tree was still poorly resolved (cf. Table 2). Neither the combined
chloroplast loci nor the generally variable ITS region could discriminate all included Dicranum
species with confidence. A recent study of the Racomitrium canescens (Hedw.) Brid. complex (Stech
et al. 2013), another representative of subclass Dicranidae, showed that nrITS performed better
in terms of species discrimination capacity than chloroplast data. In Dicranum, the concatenated
chloroplast markers provided clades with generally better support, which may be due to the
larger number of chloroplast markers included here than in the study by Stech et al. (2013), which
employed solely the rps4-trnT-trnl region. Few studies have so far compared the performance of
ITS1 vs ITS2 alone as barcoding markers for bryophytes. ITS2 was considered as universal barcode
marker for plants and animals because of conserved regions in the adjacent genes, suitable for
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TasLe 3 Pairwise Kimura 2-parameter (K2P) distances for ITS, the combined chloroplast markers and different partitions. The upper
two rows indicate the ranges of intraspecific and interspecific distances for all Dicranum species. The last row indicates the overlap between
the maximum intraspecific and minimum interspecific distances.

trnT-rps4  trnl-trnF - pbA-trnH  rps19- rpoB ITS 1 ITS 2 ITS CPall Combi
rpl2
intra- specific  0- 0- o] 0- 0] 0- o 0- o] 0-

0.0091 0.0159 0.0144 0.0065 0.0045 0.0116 0.0121 0.0103 0.0118 0.0089

inter- specific ~ O- 0- 0- 0- 0- 0- 0- 0- 0.0005-  0.0015-
0.0279 0.0391 0.0467 0.0165 0.0177 0.0638 0.0316 0.0627 0.0296 0.0346

overlap 0.0091 0.0159 0.0144 0.0065 0.0044 0.0116 0.0121 0.0103 0.0112 0.0073

primer design. Additionally, ITS2 had sufficient variability for identification of closely related
species (Yao et al. 2010) and has proven to be conclusive for some bryophyte taxa, among them
also Arctic species (Hassel et al. 2013). In contrast, other studies reported higher variation and
species discrimination capacity of ITST in bryophytes (Liu et al. 2010; Stech et al. 2013), which
was also the case in Dicranum (Table 2). As suggested by Stech et al. (2013), further analyses
would be necessary in order to infer which part of the ITS region performs best as DNA barcode
in bryophytes.

The present study is another example that a combination of several markers may be
necessary to identify moss species with confidence based on molecular data. While one marker
was sufficient to discriminate two closely related Orthodontium species (Rowntree et al. 2010), most
complexes of closely related species needed several markers to be discriminated at species level
(e.g., Carter 2012; Draper & Hedends 2009; Medina et al. 2012). However, finding the optimal
combination of barcoding markers capable of delimiting closely related species is still a major
concern in bryophytes and no consensus has been reached yet (Hollingsworth et al. 2011; Liu et al.
2010; Stech & Quandt 2010). The combination of ITS1 and/or ITS2, rps4-trnT-trnL, and psbA-trnH
seems to be suitable for moss genera with generally low sequence divergence such as Dicranum
(compared, for example, with its southern Hemisphere sister genus Dicranoloma (Renauld) Renauld;
Stech et al. 2006). Additional markers such as rps19-rpl2 may be required for certain species. The
rpoB gene, in contrast, does not provide any additional resolution.

Molecular versus morphological identification of Dicranum specimens from Svalbard—
According to the molecular data, the 30 sequenced Dicranum specimens from Svalbard belong
to five species, D. acutifolium, D. elongatum, D. laevidens, D. majus, and D. spadiceum. All of them
are among the ten species accepted for the archipelago in the checklist by Frisvoll and Elvebakk
(1996). The sequenced specimens represent most of the morphological variation of Dicranum in the
respective sampled habitats and areas on Svalbard, and consequently, most, if not all, Dicranum
species occurring there. Nonetheless, molecular analysis of an extended sampling across Svalbard
would be necessary to assess whether the five other species accepted in the checklist are actually
occurring on the archipelago or not, and to confirm the absence of the seven rejected species.
Such an extended sampling would require extensive additional fieldwork or PCR amplification and
sequencing of older herbarium material. The latter, however, seems to be difficult according to
preliminary analyses (unpublished results) of collections from Edgeaya, eastern Svalbard, dating
from the 1980s (cf. Hesse et al. 2012).



Dicranum species occurring in the Arctic are difficult to identify morphologically, especially in the
field, but also microscopically. In few species the diagnostic characters seem to be stable, such as
the strong costa and strongly incrassate, short and smooth upper lamina cells of D. elongatum, which
could be recognized relatively easily. Most species present more variability in their diagnostic
characters and are thus more often misidentified. For example, in temperate habitats, Dicranum
majus is characterized by strongly falcate leaves, prosenchymatous and porose upper lamina cells,
furrows on the costa and a double row of guide cells in the lower leaf. These typical characters
are much less distinct in High Arctic specimens (Hedends et al. 2006). High Arctic specimens can
therefore readily be mistaken for other species such as D. scoparium or D. spadiceum (Hedends &
Bisang 2004; pers. obs.). The most difficult group of species to identify is comprised of D. angustum,
D. groenlandicum, D. laevidens, and D. spadiceum. Dicranum spadiceum has long and narrow leaves
ending in a tubular apex. lts leaf margins are slightly denticulate near the apex and the lamina
cells are thin-walled and slightly porose. The basal cells are elongate, gradually becoming shorter
and irregular, and lack pores, while the typical parenchymatous cells are sometimes restricted to
the tip of the lamina. While D. angustum and D. laevidens are considered synonyms of D. spadiceum
in The Plant List (2013), the former is distinguished by long, narrow, tubular and acuminate
leaves as well as thin-walled and non-porose lamina cells. Dicranum laevidens is distinguished by
an entire leaf margin as well as incrassate and porose, prosenchymatous lamina cells (Hedenés
& Bisang 2004). According to the molecular data, D. angustum and D. laevidens are clearly
separated from D. spadiceum (Figs. 1-3), supporting their status as separate species. All respective
Svalbard specimens belong to either D. laevidens or D. spadiceum, which corresponds well with
the conclusions of Frisvoll and Elvebakk (1996) based on morphology that true D. angustum may
be rare on Svalbard and further study is necessary to delimit D. angustum from D. laevidens
or D. spadiceum. Again, additional fieldwork or molecular analysis of (old) herbarium specimens
possibly representing D. angustum would be necessary. Species boundaries of D. laevidens and D.
groenlandicum remained unclear because of their strong morphological similarities (Bellolio-Trucco
& Ireland 1990; Hedends & Bisang 2004; Nyholm 1987; Steere 1978; Tuomikoski et al. 1973).
In the absence of sporophytes, the distinction between the two species is essentially based on the
different growth form, as D. groenlandicum grows in very dense and D. laevidens in looser tufts.
Both the reference specimen of D. groenlandicum and one Svalbard specimen (Dic_1651) formed
dense cushions, but the latter belonged to D. laevidens according to the molecular data, whereas
the reference specimen was clearly separated molecularly (Figs. 1-3). This is a first indication that
the habit may not always be reliable for identifying D. groenlandicum, and that in case no other
gametophytic diagnostic characters can be found, sterile plants of D. groenlandicum can best be
identified by DNA barcoding. Examination of supplementary material would be necessary to
confirm this result.

Correct species identification is important in various fields of biodiversity assessments,
ecology and conservation (Cornelissen et al. 2007; Dinnage et al. 2012; Steele & Pires 2011;
Winter et al. 2012). Morphological identification of Arctic mosses requires taxonomic expertise
and a combination of several stable characters. However, gametophytic characters often show
deviating morphologies (Bellolio-Trucco & Ireland 1990; Hedends & Bisang 2004; Hesse et
al. 2012). In Dicranum and many other genera, sporophytic characters are useful to distinguish
gametophytically similar species, e.g., D. groenlandicum vs. D. laevidens and D. fuscescens vs. D.
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flexicaule. Yet, sporophytes are rarely present in Arctic material. Therefore, species identification
of Arctic plants of Dicranum, as well as of other complex moss species and genera, could greatly
benefit from DNA barcoding. In Dicranum, identification can be best achieved using a combination
of nuclear and plastid DNA sequences. Additional taxon sampling would, however, be necessary
to better understand the relationships between morphological variability and genetic variation,
solve taxonomic issues and build up a reference sequence database for molecular identification
of unknown specimens by local BLAST searches in addition to molecular phylogenetic approaches.









Chapter 5

Phylogeny and species delimitations in European
Dicranum (Dicranaceae, Bryophyta) inferred from nuclear
and plastid DNA.

A. S. Lang, G. Bocksberger & M. Stech

Submitted to Molecular Phylogenetics and Evolution

ABSTRACT

DNA sequences are increasingly used for taxonomy, inferring phylogenetic relationships
and identifying species boundaries. Many specific methods to define species delimitation have
appeared recently, with the generalized mixed Yule coalescent (GMYC) method being the
most popular. However, only few studies on land plants have been published so far and GMYC
analyses of bryophytes are largely missing. Dicranum is a large genus of mosses whose (morpho-)
species are partly ill-defined and frequently confused. To infer molecular species delimitations,
we reconstructed phylogenetic trees based on five chloroplast markers and nuclear ribosomal
ITS sequences from 28 out of 30 species occurring in Europe. We further applied GMYC and
PTP species delimitation methods in order to compare their discriminatory power with species
boundaries inferred from the molecular phylogenetic reconstructions and with the morphological
species concept. Phylogenetic circumscriptions were congruent with the morphological concept
for 24 species, while three taxa were molecularly indistinguishable from other closely related
species. Phylogenetic relationships between Dicranum species remained largely unsupported.
Automated species delimitation achieved similar results but tended to overestimate the number
of potential species and exposed several incongruences between the morphological concept and
inference from molecular phylogenetic reconstructions. It is concluded that GMYC and PTP methods
potentially provide a useful and objective way of delimiting bryophyte species, but studies on
further bryophyte data sets are necessary to infer whether incongruences might ensue from
evolutionary processes and to test the suitability of these approaches.

INTRODUCTION
DNA sequence data are widely used for inferring species delimitations and phylogenetic
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relationships. Specific methods to analyze species boundaries based on molecular phylogenetic
reconstructions, however, have appeared only recently (cf. Carstens et al. 2013 for review),
with the generalized mixed Yule coalescent (GMYC) method (Fontaneto et al. 2007; Pons et al.
2006) being most popular. This method estimates the point of transition from the level of species
to population evolutionary processes, i.e. it detects species boundaries based on differences in
branching rates at both species and population levels. Automated species delimitation methods
are therefore considered especially useful in organisms with unclear species boundaries, due to
poor taxonomy knowledge and because processes such as lineage sorting and introgression can
obscure the species tree signal (O’Meara 2010 and references therein). Most GMYC studies so far
focused on different animal groups (e.g. Poulakakis et al. 2012; Zaldivar-Riverén et al. 2010) and
very few examples of analyses of other organisms such as algae (e.g. Leliaert et al. 2009), fungi
(e.g. Parnmen et al. 2012) and land plants (e.g. Herndndez-Ledn et al. 201 3) have been published.
GMYC analyses of plant, and especially bryophyte, species are hence still largely missing.

Bryophytes are an important component of terrestrial ecosystems and count up to 18,000
known species (Goffinet & Shaw 2009). Nevertheless, because of the limited number of morphological
characters available, the morphological plasticity of species and the generally broad geographical
distribution, the taxonomy of many bryophyte lineages is still ambiguous. Molecular data can
facilitate the circumscription of species, especially in taxa with extreme morphological similarities
(e.g. Dong et al. 2012; Hedends & Eldends 2007; Heinrichs et al. 2009; Stech et al. 2013).

Species circumscription and identification in the Holarctic moss genus Dicranum (Dicranaceae,
Bryophyta) has been notoriously difficult. The genus counts more than 90 species (www.Tropicos.
org; Frey & Stech 2009), many of which are broadly distributed and display a great range of
morphological plasticity, and only few species are habitat-specific (Hedends & Bisang 2004).
Moreover, Dicranum and related genera display little molecular variation, as shown in previous
studies (Cox et al. 2010; La Farge et al. 2002; Stech 1999; Stech et al. 2012). Assessing
species delimitations in Dicranum is thus challenging both at the morphological and molecular
level. Our recent studies on the Dicranum scoparium and D. acutifolium species complexes (Lang
& Stech 2014; Lang et al. in press) as well as on boreal-arctic Dicranum species (Lang et al.
2014) showed that in several cases conclusive species delimitations could only be obtained
from combined analyses of several chloroplast markers and nuclear ribosomal ITS sequences.

The present study aims to elucidate species boundaries within Dicranum on a broader
geographic scale, including 27 of the 29 Dicranum species occurring in Europe (Hedends
& Bisang 2004) plus D. septentrionale Tubanova & Ignatova, a newly recorded species in
Scandinavia (Lang et al. in press). Molecular phylogenetic reconstructions based on five
chloroplast markers (trnH_ -psbA, rps4-trnT . and trnl, -trnf_ , intergenic spacers,
rps19-rpl2, rpoB) plus the nriTS1-5.8S-ITS2 region will be used to test, for the first time in
bryophytes, the congruence of two automated species delineation approaches, the general
mixed Yule-coalescent (GMYC) models and Poisson tree processes (PTP). Sequence-based
species delimitations will furthermore be compared with morphologically recognized species.

MATERIAL AND METHODS

Sampling— A total of 202 Dicranum specimens were sampled (Appendix 1), representing
27 species of the 29 European species recognized by Hedends and Bisang (2004) and including
the new European species record of D. septentrionale: six Dicranum acutifolium (Lindb. & Arnell)
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C.E.O. Jensen, nine D. angustum Lindb., six D. bonjeanii De Not., five D. brevifolium (Lindb.) Lindb.,
three D. canariense Hampe ex Mill. Hal., five D. crassifolium Sérgio, Ochyra & Séneca, one D.
dispersum Engelmark, one D. drummondii Mill. Hal., four D. elongatum Schleich. ex Schwégr., three
D. flagellare Hedw., 11 D. flexicaule Brid., four D. fragilifolium Llindb.,six D. fuscescens Turner,
two D. groenlandicum Brid., 11 D. laevidens R.S. Williams, three D. leioneuron Kindb., eight D.
majus Turner, four D. montanum Hedw., four D. polysetum Sw., 65 D. scoparium Hedw., two D.
scottianum Turner ex Robt. Scott, nine D. septentrionale, 15 D. spadiceum J.E. Zetterst., three D.
spurivm Hedw., four D. tauricum Sapjegin, four D. undulatum Schrad. ex Brid. and four D. viride
(Sull. & Lesq.) Lindb. specimens. The sampling included 40 specimens newly sequenced for all six
markers employed here, four specimens of which ITS sequences had already been generated by
Tubanova et al. (2010) and Ignatova and Fedosov (2008) and 162 specimens of which chloroplast
and ITS sequences were generated for previous studies (Lang & Stech 2014; Lang et al. 2014,
in press; Stech 1999; Stech et al. 2006). As previous studies showed that Holomitrium is sister to
Dicranum (La Farge et al. 2002; Stech et al. 2006), four samples, one H. crispulum Mart. and three
H. arboreum Mitt, were chosen as outgroup representatives.

DNA extraction, amplification and sequencing— The greenest parts of single gametophyte
stems were selected for DNA extraction and cleaned manually with demineralised water under a
binocular. Total DNA extraction was carried out using the NucleoSpin® Extract Il Kit (Macherey-
Nagel, Diren, Germany). Six markers employed to delimit closely related Dicranum species in
Lang and Stech (2014) and Lang et al. (2014 in press) were amplified and sequenced, i.e. five
chloroplast regions (partial rpoB gene, trnH_ -psbA, rps19-rpl2, rps4-trnT and trnl  ,-trnF_,
intergenic spacer) and the nuclear ribosomal nriTS1-5.8S-ITS2 region. PCR amplifications were
performed as described in Lang and Stech (2014). All PCR products were purified and sequenced
at Macrogen Inc. (www.macrogen.com). GenBank accession numbers of all sequences are listed in
Appendix 1.

Alignment and phylogenetic reconstruction— Sequences were aligned in Geneious v5.3.6
(Biomatters 2010) using 65% similarity matrix costs, and manually adjusted. Short hairpin-
associated inversions in the trnH-psbA spacer, which can flip at the population level and may
significantly reduce phylogenetic structure if undetected (Borsch & Quandt 2009; Quandt & Stech
2004; Whitlock et al. 2010), were positionally separated in the alignment and the corresponding
indels were excluded.

Phylogenetic inferences were based on maximum likelihood (ML) and Bayesian inference (Bl)
analyses. Gaps were coded as informative by a simple indel coding strategy (SIC) (Simmons and
Ochoterena 2000) implemented in SeqState (Miller 2004). To check for incongruence, phylogenetic
reconstructions based on chloroplast and nuclear sequences were visually compared. In addition, an
incongruence length difference test (ILD, Farrisetal. 1994) asimplemented in PAUP* 4.0b 10 (Swofford
2002) was performed with 100 replicates. As both visual inspections and the ILD test indicated that
the plastid and nuclear tree topologies were congruent (p=0.06), the two datasets were combined.

Three nucleotide partitions were used in ML and Bl, namely the non-coding chloroplast markers
(rps4-trnT, trnl-trnF, trnH-psbA, rps19-rpl2), the coding chloroplast region rpoB and the nuclear
spacer nrITS. ML analyses were carried out with RAXML v.7.2.6 (Stamatakis 2006) employing the
graphical user interface raxmlGUI v.0.93 (Silvestro & Michalak 2012) with the default GTR model



of nucleotide substitution and +I rate heterogeneity for all partitions. Bootstrap analyses under
ML were done using the thorough bootstrap heuristics algorithm with 20 runs and 1000 replicates.
Bl analyses were run on the CIPRES science gateway (Miller et al. 2010). Bayesian posterior
probabilities were calculated based on the Markov chain Monte Carlo (MCMC) method, using
MrBayes v3.2.1 x64 (Huelsenbeck & Ronquist 2001; Ronquist & Huelsenbeck 2003). The a priori
probabilities supplied were those specified in the default settings of the program. Best-fit models
of nucleotide sequence evolution were selected according to the Akaike information criterion in
MrModeltest (Posada and Crandall 1998) executed through PAUP*, namely HKY + I for the non-
coding chloroplast partition, and HKY + | for coding and nuclear partitions. Sequence and indel
data were treated as separate and unlinked partitions, employing the restriction site model (‘F817)
for the indel matrix as recommended by Ronquist et al. (2005). Two runs with four chains were
run simultaneously (11 X 10¢ generations), with the temperature of the single heated chain set to
0.5. Chains were sampled every 1,000 generations and the respective trees written to a tree file.
Fifty percent majority rule consensus trees and posterior probabilities of clades were calculated
by combining the two runs and using the trees sampled after the chains converged. Trace plots
generated in Tracer v1.5 (Rambaut & Drummond 2007) were used to check for convergence of the
runs (plateaus of all runs at comparable likelihoods) and to infer the ‘burnin’, which was set to 25%.

Sequence-based species delimitation— Species boundaries were estimated using the
GMYC (Fontaneto et al. 2007; Monaghan et al. 2009; Pons et al. 2006) and the PTP (Zhang et
al. 2013) approaches. As GMYC requires a fully resolved topology with branch length estimates,
we reconstructed an ultrametric tree with a strict molecular clock using parameters specified in
BEAUti v. 2 and implemented in BEAST version 2.1.1 (Bouckaert et al. 2014). Branch lengths were
estimated under a Yule prior with HKY nucleotide substitution model for each data partition. We
included a gamma rate heterogeneity and no invariant sites for the chloroplast partition and both
rpoB and ITS partitions included no gamma rate heterogeneity but estimated invariant sites. In
the absence of fossil records, we applied a plastid substitution rate of 5.0 X 10“ SD of 2.0-8.0
X 10 subst./site /My following Villarreal and Renner (2014) for chloroplast and rpoB partitions
and a substitution rate of 1.35 X 107 subst./site /My for ITS as used in Heinrichs et al. (2006). The
MCMC chains were run with 20 X 10% generations, saving the results every 2000th generation.
The convergence of the runs was examined in Tracer v1.5. The maximum clade credibility tree
was built from the combined runs after eliminating 25% of the trees for burnin in TreeAnnotator
v1.7.2. The GMYC approach was carried out in R 2.15 (R Development Core Team 2013) using
the splits (Ezard et al. 2009) and ape (Paradis et al. 2004) packages. The number of clusters and
singletons were estimated by running both single and multiple threshold optimisations and using
a multimodel Akaike information criterion with a model cutoff of deltaAlCc = 7 (Monaghan et
al. 2009; Pons et al. 2006; Powell 2012). On the contrary to the GMYC approach, PTP neither
requires an ultrametric tree nor a sequence similarity threshold as input data because speciation
rate is modelled by using the number of substitutions between branching and speciation events
(Zhang et al. 2013). We therefore used the RaxML trees as input data, with 500,000 MCMC
generations, thinning set to 100 and burnin at 25%. The calculations were conducted on the bPTP
websever (http://species.h-its.org/ptp/).

Unbalanced sampling can affect the estimates of haplotypes and thus might overestimate the
number of potential species (Bergsten et al. 2012; Zhang et al. 2013). Therefore, GMYC and PTP
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analyses were additionally conducted on a reduced alignment containing only unique sequences
(haplotypes). This reduced alignment, automatically obtained from the raxmlGUI interface,
contained 145 sequences, with the strongest reduction in D. scoparium sequences retaining 18
out of the initial 65 sequences. The ultrametric and RaxML trees were reconstructed following the
above-mentioned methods.

ResuLTs

Phylogenetic reconstruction— The total chloroplast alignment comprised 1914 positions,
of which 222 were variable, and 132 of the variable characters were parsimony-informative.
Of the 1142 positions in the ITS alignment, 124 ambiguous positions were removed from the
subsequent calculations. The remaining 1019 positions comprised 217 variable characters, of
which 139 were parsimony-informative. Simple indel coding of the combined dataset yielded 240
additional characters (excluding three corresponding to an inversion in psbA-trnH), of which 148
were parsimony-informative.

The single optimal ML tree of the combined markers is shown in Fig. 1, with bootstrap
support (=75% BS) from likelihood analyses and posterior probabilities (PP >95) from Bayesian
inference indicated on the branches. The phylogenetic reconstruction resolved 23 clades that
corresponded to morphological species, including the two species with only one sample (Fig.
1). While the clades of D. acutifolium, D. angustum, D. bonjeanii, D. brevifolium, D. flagellare,
D. fuscescens, D. laevidens, D. majus, D. montanum, D. polysetum, D. scoparium s.l. (including D.
leioneuron, D. cf. scoparium, and D. scoparium s.s., cf. Lang & Stech 2014), D. septentrionale, D.
spadiceum, D. spurium, D. tauricum, D. undulatum and D. viride were strongly supported (=81%
BS, PP <0.97), D. flexicaule was supported only in the Bayesian reconstruction (62% BS, PP 0.99).

Dicranum groenlandicum did not form a monophyletic clade. Six species were molecularly
indistinguishable from other closely related species: D. fragilifolium and D. elongatum formed
a highly supported clade (95% BS, PP 0.99). While D. crassifolium was intermingled with
D. scopariums s.s., D leioneuron clustered with North American specimens of D. cf. scoparium
in a highly supported clade (92% BS, PP 1). Finally, D. scottianum and D. canariense formed
a highly supported clade (100% BS, PP 1). However, the samples of both D. scottianum
and D. canariense clustered in supported subclade (94, 97% BS, PP 1, respectively).

Sequence- based species delimitation— The lineage through-time plot (Fig. 2b, ¢) indicated
an exponential increase in branching rate near the tip of the tree. The single threshold GMYC
model using the ultrametric phylogenetic tree created in BEAST resulted in the identification of 24
Dicranum clusters with high probabilities (Cl= 23-26, InL of null model= 741.079, ML of GMYC
model= 748.162, p= 0.00269**) and 10 additional lineages consisting of single sequences,
resulting in a total of 34 entities, excluding the outgroup (Fig. 2 a, b). The multiple threshold
method gave four threshold times, resulting in a total of 58 entities that consisted of 38 clusters
(Cl= 30-39, InL of null model= 741.079, ML of GMYC model= 752.849, p=0.000634***) and
20 singletons, excluding the outgroup (Fig. 2 ¢; Appendix 2). Although the multiple-threshold option
was statistically preferred over the single-threshold option (deltaAIC=2.944), neither model was
significantly different (Chi-square= 9.375, d.f.= 9, p= 0.40339). An inspection of the results
obtained from both analyses revealed that the multiple-threshold GMYC model considered a
higher number of clusters from samples that belonged to single lineages (Fig. 2a). Therefore, we
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took a more conservative approach and discussed only the results of the single-threshold method.

The trees resulting from PTP gave similar results to GMYC (Fig. 2a). The number of estimated
species varied between 25 and 116, excluding the outgroup (acceptance rate= 0.593), with
37 partitions supported by the ML search, excluding the outgroup (Fig. 2a, Appendix 3).

GMYCresults based on the reduced alignment were similar to the results based on the extended
alignment. The single-threshold model indicated the presence of 23 clusters and 31 entities while the
multiple models resulted in four threshold times and resulted in 30 clusters and 48 entities, excluding
the outgroup (ClI= 9-40/ 38-68, InL of null model= 259.1778/ 259.1778, ML of GMYC model=
263.0662/ 266.5076, p=0.051/ 0.023%, respectively; Table 1). The number of estimated species
obtained from PTP method ranged between 49-102 entities, excluding the outgroup (acceptance
rate= 0.716), with 42 partitions supported by the ML search, excluding the outgroup (Appendix 4).

DiscussioN

Phylogenetic reconstruction versus morphological species— The present study comprises the
largest molecular dataset of Dicranum available so far, including all but two Dicranum species
occurring in Europe following Hedends and Bisang (2004), plus D. septentrionale, recently described
from Russia and newly identified in Scandinavia (Tubanova et al. 2010; Lang et al. 2014). The
majority of the analysed species (23 out of 28, including two singletons), were molecularly
recognisable based on the combined analysis of five chloroplast markers and nuclear ribosomal
ITS sequences (Fig. 1), albeit not all with significant statistical support. The results support our recent
phylogenetic studies on Dicranum species complexes and Arctic Dicranum species (Lang & Stech
2014; Lang et al. 2014; Lang et al. in press) in that a combination of molecular markers data can
clarify species circumscriptions in Dicranum, and that the low resolution and clade support within
Dicranum in earlier analyses (e.g. La Farge et al. 2002; Stech et al. 2006; Tubanova et al. 2010;
Tubanova & Ignatova 2011) was a result of too few molecular markers analysed (cf. also Stech &
Quandt 2010). Furthermore, the present study shows that, at least for Europe, the molecular data
to a large extent support the morphological species concept, despite morphological confusions and
subtle diagnostic characters in several species (e.g. Lang et al. in press; Tubanova et al. 2010).

In contrast to these results, nine species showed discrepancies between their morphological
concepts and their molecular circumscription, namely D. groenlandicum, D. elongatum, D. fragilifolium,
D. scottianum, D. canariense, D. leioneuron and D. cf scoparium. Dicranum groenlandicum was
resolved as paraphyletic but without significant statistical support (Fig. 1). This arctic species is
morphologically very similar to D. laevidens and, in absence of sporophytes, both species are
essentially differentiated based on the growth form. However, recent molecular studies on arctic
Dicranum suggested that both species represent two separate entities (Lang et al. 2014). The
present phylogenetic reconstruction confirms the separation of D. groenlandicum from D. laevidens
and further confirms the delineation of the latter species. Nevertheless, additional sequences of
D. groenladicum are necessary to infer its delimitation. Dicranum elongatum and D. fragilifolium
are morphologically different and occupy different habitats (Ireland 2007). Moreover, Dicranum
elongatum is frequently confused with D. groenlandicum, while D. fragilifolium shares morphological
similarities with D. tauricum (Hedends & Bisang 2004; Ireland 2007). Despite their clear
morphological distinctions, the present molecular phylogenetic reconstruction indicates that both D.
elongatum and D. fragilifolium belong to the same taxon (Fig. 1). The two Macaronesian-Atlantic
European species D. canariense and D. scottianum were resolved in one well-supported clade.



Because of their morphological resemblance, D. canariense has been considered as a subspecies or
variety of D. scottianum (Tropicos.org). In the current concept, D. canariense differs from the latter
by its strongly denticulate margins and thick and denticulate costa (Hedends & Bisang 2004). The
sampling included in this study confirms their close relationship and indicates that both taxa should
be distinguished at subspecies level, however a larger sampling would be necessary to confirm
these results. Morphological and ecological characters of D. leioneuron have been discussed
several times, as it is frequently confused with either D. bonjeanii or D. scoparium (Ahti & Isoviita
1962; Corley 1991). Consequently, D. leioneuron has been sometimes considered as an ecotype
of D. scoparium or a variety of D. bonjeanii (Ahti & Isoviita 1962), a hypothesis that is rejected by
the present phylogenetic reconstructions (Fig. 1), which in turn confirm the observations of Corley
(1991). Despite being molecularly separated from D. bonjeanii and D. scoparium s.str., the D.
leioneuron specimens included in this study clustered in a well-supported lineage together with
North American samples, named as D. cf. scoparium in Lang and Stech (2014). Morphology and
habitat of these two groups are, however, clearly different: the North American specimens have
falcate-secund leaves that are serrate on the margins and a lamellate costa. The D. leioneuron
specimens, on the other hand, have all the characteristics of this species, i.e. small and erect-patent
leaves; very thin nerve and without dorsal lamellae. Additionally, flagellary shoots are common in
this species. Although the present data does not indicate any hybridization processes, the use of
other molecular methods or more variable markers could bring new insights in understanding the
relationship between D. leioneuron and D. scoparium. Finally, D. crassifolium is a species that has
been described recently (Sérgio et al. 1995) and that has been found only in few places in Europe.
This species resembles D. scoparium but is most similar to D. transylvanicum (not included here)
due to a bi- or even tristratose leaf lamina and denticulate leaf margins. The present molecular
phylogenetic inferences, however, show that this species actually corresponds to D. scoparium.
Dicranum scoparium is known to be very plastic morphologically and occurs in a very broad range
of habitats (Hedends & Bisang 2004; Ireland 2007; Lang & Stech 2014; Smith 2004), including
soil or humus, as well as on rocks or tree bases, in open and shady places where D. crassifolium
grows as well (Sérgio et al. 1995). What triggers the deviating leaf lamina morphology of D.
crassifolium, and how D. transylvanicum relates to D. crassifolium and D. scoparium, remais to be
tested.

Various factors such as the environment or polyploidisation may account for the observed
morphological variability of D. crassifolium, D. scottianum and D. canariense, for exemple. Deviating
morphologies are frequently observed in bryophytes, especially in species growing in stressful
environmental conditions (Buryovd & Shaw 2005; Hedends et al. 2006; Pereira et al. 2013;
Sastad 1998; Sastad et al. 1999; Spitale & Petraglia 2010). Most of the Dicranum species are
widespread and found in a great range of habitats. Hence, local adaptation could partly explain
the morphological differences of genetically similar taxa, such as observed in D. fragilifolium
and D. elongatum or D. leioneurion. Although the present data does not indicate any hybridisation
events, this genetic process is known to influence the morphology (Draper & Hedends 2009;
Hedends 2008; Natcheva & Cronberg 2004; Sotiaux et al. 2009). Moreover, the consequences of
the special sexual reproduction of Dicranum, i.e. dwarf males growing on the branch of a female
plant (pseudomonoicy), are largely unknown and would deserve further investigations, in order to
explain genetic relationship of closely related species.
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Taste 1. Type of alignment, species delimitation method and number of estimated entities obtained for Dicranum. LR and LR test of
the GMYC single- threshold (GMYCs) and multiple-threshold (GMYCm) analyses are also mentioned. Significant values are indicated with an
asterisk. The species delimitation results are compared with the number of supported phylogenetic entities (phylo) obtained from maximum
likelihood analyses.

Alignment method Number of Number of entities LR LR test
sequences estimated
clusters

extended GMYCs 206 24 33 9.723 0.021%*
GMYCm 35 58 19.778 0.011%*
PTP 37
phylo 21 23

reduced GMYCs 145 23 31 7778 0.051
GMYCm 30 47 14.660 0.023*
PTP 42
phylo 20 22

Species delineation using GMYC and PTP— The definition of boundaries between species
clusters is essential, as it will influence the interpretation of the phylogenetic reconstructions (Powell
2012). However, one of the major drawbacks of molecular taxonomy is putting a non-arbitrary
threshold for delineating species. The main advantage of general mixed Yule-coalescent (GMYC)
or Poisson tree processes (PTP) methods is the objective estimation of phylogenetic entities and
the circumscription of taxa based on branch length dynamics rather than sequences similarities
(Monaghan et al. 2009; Pons et al. 2006). Although GMYC and PTP performances have been
proven to be stable under a wide range of conditions, the accuracy of species delimitation methods
will principally depend on the singularities of the data set and the initial species concept used
(Talavera et al. 2013; Zhang et al. 201 3). In this study, 34 species were recovered by GMYC single
threshold methods, which corresponds generally well with the phylogenetic reconstruction.

However, disagreements were observed, such as in D. scoparium but also D. viride, D.
fragilifolium- D. elongatum, D. flexicaule D. fuscescens and D. polysetum, where overestimations
in the number of entities occurred compared to the molecular and morphological delimitations
(Fig. 2a). Each of these species counted one additional entity when compared to the phylogenetic
tree, except for D. fragilifolium- D. elongatum and D. scoparium which counted a total of three,
respectively four entities. Simultaneously, GMYC calculations considered both sample of D.
groenlandicum as one species and both D. brevifolium and D. acutifolium were considered as
belonging to the same lineage. The number of ML estimates obtained from the PTP of the extended
dataset were relatively similar to the results obtained from GMYC methods (Table 1). However, the
number of PTP estimates based on the reduced dataset was slightly higher (Table 1). Simulations
have shown that an unbalanced sampling are likely to increase the estimates of haplotypes of
the oversampled species (Bergsten et al. 2012; Zhang et al. 2013) and each specimen of an
undersampled species might be counted as separate entity (Zhang et al. 2013). In our study,
the reduced sampling of D. scoparium did not decrease the number of potential species. On the
contrary, most of the haplotypes or unique sequences, in particular within D. scoparium, were
considered as single lineages (Appendix 4). The effect of unbalanced sampling in our dataset has
probably less impact on the species delimitation due to the generally low variability in Dicranum.
Indeed, weak signals and high levels of uncertainty can explain the large range of estimated



species in both PTP estimations (J. Zhang, pers. communication).

Overestimations in the GMYC have been observed in previous studies (e.g. Miralles and
Vences 2013; Puillandre et al. 2012; Talavera et al. 2013) and were often related with errors in
the GMYC methods or in the construction of the ultrametric, rather than to taxonomical knowledge
gaps (Talavera et al. 2013; Zhang et al. 2013). As our PTP estimates, obtained from a RaxML tree,
were relatively close to the phylogenetic clades and not substantially different from the GMYC
results, we considered that errors in the ultrametric tree construction had little effects on the species
delimitation. As for now, the GMYC and PTP analysis revealed multiple lineages within species in
Dicranum that lack morphological and ecological support. Simultaneously, these methods showed
an absence of DNA divergences between D. acutifolium and D. brevifolium as well as between D.
scottianum and D. canariense, which indicates that these four morpho-species might belong to two
single taxa.

CoNCLUSIONS

Biodiversity assessments rely on the correct delimitation of species. The identification of
bryophyte species is largely based on morphological characters, which are often subtle and
difficult to apply, or prone to plasticity induced by environmental conditions. Phylogenetic species
delimitations, on the other hand, also rely on a certain degree of subjectivity. Automated methods
such as GMYC and PTP may provide a more objective approach to molecular species delineation
based on maximum likelihood inferences, although inferred boundaries are only putative. Our results
showed that DNA-based circumscriptions were generally congruent with morphological species
delimitations. Nevertheless, GMYC and especially PTP methods exposed several incongruences
between morphological concepts and inference from molecular phylogenetic reconstructions. These
incongruences might ensue from evolutionary processes, but also display the need for further
testing on other bryophyte data sets to infer the suitability of GMYC and PTP methods for species
delimitation in bryophytes.
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Chapter 6

Summary and conclusions

Dicranum is a large genus essentially found in the Holarctic (Crosby et al. 1999; Frey & Stech
2009). With more than 90 accepted species, Dicranum is one of the largest genera of Dicranaceae
(Missouri Botanical Garden; Frey & Stech 2009) and about 30 species are recorded for Europe
(Hedends & Bisang 2004). Dicranum species grow in a broad range of habitats, forming dense,
tomentose tufts or cushions (Crum & Anderson, 1981), and are easily recognized in the field by
their typical « Dicranum-look »: acrocarpous stems and leaves that are lanceolate, gradually
acuminate and sometimes secund. When fertile, sporophytes have long-rostrate opercula, cucullate
calyptrae and 16 peristome teeth that are divided to half-way (Nyholm 1987; Hedends & Bisang
2004; Smith 2004; Ireland 2007). However, the taxonomy of this genus is controversial (Allen
1998; Ireland 2007). It has been divided into seven sections (Peterson 1979; Nyholm 1987) whose
characteristics are not always distinctive. Moreover, many species are difficult to distinguish due to
their morphological plasticity. Intergrading forms are often found, leading to frequent confusions
and unclear taxonomy.

In this thesis, species delimitations of temperate and arctic Dicranum lineages were
investigated using molecular phylogenetic reconstructions and barcoding methods. Four potential
barcode markers (rps4-trnT, trnl-F, psbA-trnH, nrITS) and two additional chloroplast markers
(rps19-rpl2 and rpoB) were sequenced for 90% of the species known in Europe. Molecular
data were analysed with maximum parsimony, maximum likelihood and Bayesian inferences for
phylogenetic investigations. Furthermore, Bayesian approaches were used for testing automated
species delimitation methods (generalised mixed Yule coalescent (GMYC) and Poisson tree processes
(PTP)). Morphological characters were re-addressed in the light of the molecular phylogenetic
inferences. Finally, gametophytic characters were re-examined and scored for statistical analyses
in order to evaluate their relevance for distinguishing closely related species.

What is the Dicranum scoparium complex? What are the morphological characters of Dicranum
scoparium and how is it related to its morphologically close species?

Bryophytes have a limited number of morphological characters that are strongly influenced
by the environment (Briggs 1965; Vanderpoorten & Goffinet 2006). Therefore, it can be difficult to
define stable characters that are distinctive for each species. In this thesis, the problem of species
delimitations was first investigated in a number of species of section Dicranum (Hedw.) Sull. (sensu
Nyholm 1987; Bellolio-Trucco & Ireland 1990) whose morphological forms intergrade into one
another (Lang & Stech 2014; chapter 1), with a focus on the widespread and polymorphic D.
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scoparium. Molecular phylogenetic reconstructions indicated that molecular lineages are generally
congruent with morphological species concepts in Dicranum. They further suggested a close
relationship of the Holarctic Dicranum scoparium Hedw. and D. bonjeanii De Not. with the more
narrowly distributed D. howellii Renauld & Cardot (North America), D. lorifolium Mitt., D. japonicum
Mitt. and D. nipponense Besch. (Asia), which together could be regarded as the D. scoparium species
complex. However, other species of section Dicranum, namely D. majus Turner and D. polysetum Sw.
were separated from the D. scoparium complex, although frequent morphological confusion with D.
scoparium are reported. The large sampling of D. scoparium, including North American, European
and Asian specimens and covering the high degree of morphological trait variation, revealed a
monophyletic lineage, defined as D. scoparium s.s., that corresponds to the morphological concept
of this species: the leaves are straight to falcate-secund ending in a keeled apex, margins are
serrate, the costa is percurrent with four serrate ridges on its dorsal side and several stereid
bands can be seen in cross-sections, lamina cells are prosenchymatous and porose. Nonetheless, D.
crassifolium Sérgio, Ochyra & Séneca also corresponded to D. scoparium s.s. despite its bistratose
lamina and dentate margins (chapter 5). Furthermore, several D. scoparium-looking specimens
from North America (D. cf. scoparium) were separated from D. scoparium s.s. and cluster with D.
leioneuron Kindb. (chapter 5).

What are D. bardunovii and D. septentrionale? Are they separate species? Are their

morphological characters adequate for distinguishing them from the closely related D. acutifolium
and D. brevifolium?é

Two new species have been recently described from Russia: D. bardunovii Tubanova
& Ignatova and D. septentrionale Tubanova & Ignatova. These two species resemble in many
characters to D. acutifolium and D. brevifolium and are easily overlooked. Thus, the four mentioned
species are considered to belong to a complex of species named the D. acutifolium species
complex. The discovery of D. bardunovii and D. septentrionale is based on phylogenies using only
the nuclear spacer nriITS (Tubanova et al. 2010; Tubanova & Ignatova 201 1). Although this marker
is often considered as sufficient for species delimitation (Chen et al. 2010; Liu et al. 2011), species
circumscription in Dicranum lacked support and resolution (Lang & Stech 2014, chapter 1) due to
the generally low genetic variability in Dicranaceae (Stech 1999; La Farge et al. 2002). Hence,
several markers were necessary for clearer species circumscriptions as shown in the previous
study (Lang & Stech 2014). Therefore, we studied the molecular relationship of the D. acutifolium
species complex and its close allies by combing additional chloroplast markers to the existing
ITS phylogeny and analysed the relevance of morphological characters. The combined molecular
analyses corroborated the results obtained by Tubanova et al. (2010) and Tubanova & Ignatova
(2011). While the delimitation of D. septentrionale became strongly supported, the circumscription
of D. bardunovii remained less clearly defined. Nevertheless, both of them could be recognized as
species and were distinct from D. brevifolium and D. acutifolium. The molecular circumscription of D.
bardunovii, D. acutifolium and D. brevifolium and especially D. septentrionale was in sharp contrast
with their morphological resemblance because the characters differentiating the four species are
minute and may be easily overlooked. The recognition of these species was moreover hampered
by the occurrence of mixed collections, as exemplified by the holotype of D. bardunovii, which
contained also individuals of D. acutifolium. In line with previous morphological and phylogenetic



analyses (e.g. Sukkharak et al. 2011; Carter, 2012; Medina, 2012; Stech et al. 2013; Lang &
Stech, 2014) the present study highlighted the importance of molecular data for clarifying species
circumscriptions.

Is barcoding a method that can be used for identifying Dicranum speciesé How do barcode
markers perform in terms of species identification?

Correct species identification is important in various fields of biodiversity assessments, ecology
and conservation (Cornelissen et al. 2007; Dinnage et al. 2012; Steele & Pires 2011; Winter et
al. 2013) but morphological identification of organisms with reduced sizes such as bryophytes can
be difficult, especially of arctic bryophytes species, whose gametophytic characters show extreme
deviating morphologies and sporophytes are mostly absent (Bellolio-Trucco & Ireland 1990;
Hedends & Bisang 2004; Hesse et al. 2012). DNA barcoding method is an alternative approach
to investigate species delimitation. In chapter 4, we demonstrated that molecular circumscription of
arctic Dicranum species using a high number of barcode markers was possible. However, analyses
of each individual marker indicated that they tended to possess little interspecific variability.
Moreover, the performance of ITS1 and ITS2 was overrated and failed at discriminating all
Dicranum species. Interspecific genetic distances were generally small and overlapped with
intraspecific genetic distances. Used in combinations, the most commonly used markers, trnT- rps4,
trnl-F psbA-trnH and nrITS, did not contain a natural “barcode gap” either, meaning that some
species remain difficult to circumscribe (chapter 5). However, since the overlap was reduced and in
line with other barcode studies (Liu et al. 2011; Stech et al. 2013; Hassel et al. 201 3), these four
markers could be considered as potential barcode markers in Dicranum.

Is_automated species delimitation congruent with the morphological concept of European
species?

Generalized mixed Yule coalescent approach (GMYC) or Poisson tree processes (PTP) are
species delimitation methods based on likelihood (ML) phylogenetic inferences (Pons et al. 2006;
Monaghan et al. 2009). While GMYC requires a time-calibrated tree, PTP also works on standard
phylogenetic trees. Nevertheless, both methods calculate a number of entities that represent
theoretical species. Based on a phylogenetic reconstruction that included 28 of the 30 Dicranum
species found in Europe, the number of entities recovered by the GMYC methods varied between
34 and 58 and 37 estimated entities were recovered by PTP approaches (chapter 5). When
considering the single threshold GMYC model and the ML tree obtained from the PTP, both methods
were relatively congruent with 34 and 37 species, respectively. These estimations, however, were
slightly higher than the number of morphological species. The overestimations concerned D.
scoparium but also D. viride, D. fragilifolium, D. fuscescens and D. polysetum. Simulations have shown
that an unbalanced dataset and low intraspecific genetic variability are likely to increase the
estimates of haplotypes of the oversampled species (Bergsten et al., 2012; Zhang et al., 2013). In
such cases, each specimen of a species with small sampling might be counted as a separate entity
(Zhang et al. 2013). In our study, analyses on a reduced dataset did not decrease the number
of potential species. Therefore, the effect of unbalanced sampling probably had less impact on
species delimitations than the generally low genetic variability within the genus Dicranum.
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Despite the overestimated number of species obtained with automated estimation methods,
phylogenetic clades were delimiting species that were generally congruent with the actual
morphological circumscriptions. Molecular phylogenetic inferences also brought useful insights in
several morpho-species such as D. leioneuron, D. crassifolium, D. scottianum and D. canariense, D.
angustum and D. laevidens or species of the D. acutifolium complex (chapter 3, 4, 5), whose taxonomy
was until now unclear. Furthermore, the division of the genus into sections had no biological means,
as depicted from the phylogenetic tree in chapter 5.

Future studies

In this thesis, we show that molecular methods enabled us to clarify the molecular circumscription
of a subset of Dicranum species and to examine the relationship within species complexes.
Although most of the studied taxa were statistically strongly supported, three European species
were indistinguishable from other species (D. crassifolium from D. scoparium, D. scottianum from
D. canariense, D. elongatum from D. fragilifolium). Additionally, D. leioneuron grouped with North
American specimens of D. scoparium despite clear morphological differences between the two
species. A detailed re-interpretation of morphological differences and possibly re-examination of
diagnostic characters should be carried out. Moreover, the delimitation of three European species,
D. fulvum, D. muehlenbeckii and D. transylvanicum, could not be included in the study. Morpho-
molecular analyses of these species would allow us to better understand their genetic affiliation.

The sampling of this thesis represent roughly a third of the known Dicranum species. The
missing taxa are mainly found in Asia and America. A complete revision of Dicranum, including all
the species, would allow us to complete our knowledge of this species-rich genus.

Furthermore, the inclusion of additional variable markers and studies of microsatellites loci
would help to understand the relationship between the different taxa and to explore the influence
of male dwarfism on species reproduction as well as to help us answering the question whether
hybridization event occurs in Dicranum.



Samenvatting en Conclusies

Dicranum (Gaffeltandmos) is een groot geslacht dat hoofdzakelijk voorkomt in het holarctisch
gebied (Crosby et al. 1999; Frey & Stech 2009). Met meer dan 90 geaccepteerde soorten is
Dicranum één van de grotere genera in de Dicranaceae (Frey & Stech 2009) en ongeveer 30
soorten zijn geregistreerd voor Europa (Hedends & Bisang 2004). Dicranum soorten worden in
veel verschillende habitats aangetroffen en vormen dichte viltige polletjes of kussentjes (Crum
& Anderson, 1981). Ze zijn in het veld aan hun typische « Dicranum-habitus » gemakkelijk te
herkennen: acrocarpe stengels en eirond-lancetvormige bladeren die geleidelijk zijn toegespitst en
soms homotroop gekromd zijn. De sporenkapsels hebben lang-snavelvormige opercula, kapvormige
calyptra’s en 16 peristoomtanden die halverwege in tweeén gedeeld zijn (Nyholm 1987; Hedends
& Bisang 2004; Smith 2004; Ireland 2007). Niettemin is de taxonomie van dit genus controversieel
(Allen 1998; Ireland 2007). Het genus is verdeeld in zeven secties (Peterson 1979; Nyholm 1987)
waarvan de kenmerken niet altijd onderscheidend zijn. Bovendien zijn veel soorten moeilijk van
elkaar te onderscheiden vanwege hun morfologische plasticiteit.

In dit proefschrift is de soortomgrenzing van gematigde en Arctische Dicranum soorten
onderzocht met behulp van moleculaire fylogenetische reconstructies en DNA-barcodering. Vier
potentiéle barcode merkers (rps4-trnT, trnl-F, psbA-trnH, nrITS) en twee aanvullende chloroplast
merkers (rps19-rpl2 en rpoB) zijn gesequenced voor 90% van de soorten bekend uit Europa.
Moleculaire data werden geanalyseerd met maximale parsimonie, maximum likelihood en
Bayesiaanse methodes voor fylogenetisch onderzoek. Bovendien zijn Bayesiaanse methodes gebruikt
om automatische soortsbegrenzing-methodes te testen. De bruikbaarheid van morfologische
kenmerken werd geévalueerd in het licht van de moleculaire fylogenetische resultaten. Om de
toepasbaarheid van gametofytkenmerken te evalueren, zijn deze heronderzocht en gescoord om
statische analysen vit te voeren.

Wat is het Dicranum scoparium complex? Wat zijn de morfologische kenmerken van Dicranum
scoparium en hoe is D. scoparium gerelateerd aan de morfologisch meest verwante soorten?

Bryofyten hebben een beperkt aantal morfologische kenmerken die sterk worden beinvioed
door de milieufactoren (Briggs 1965; Vanderpoorten & Goffinet 2006). Daarom kan het
moeilijk zijn om stabiele kenmerken te definiéren die onderscheidend zijn voor elke soort. In dit
proefschrift zijn de problemen van soortsbegrenzing eerst onderzocht in een aantal soorten van
de sectie Dicranum (Hedw.) Sull. (sensu Nyholm 1987; Bellolio-Trucco & Ireland 1990) waarvan de
morfologische vormen met elkaar overlappen (Lang & Stech 2014; hoofdstuk 1) met een focus
op de wijdverspreide polymorfe soort Dicranum Hedw. scoparium. Moleculaire fylogenetische
reconstructies wijzen erop dat de moleculaire lijnen meestal congruent zijn met het morfologische
soortconcept in Dicranum. Zij suggereren verder een nauwe verwantschap tussen de holarctische
D. scoparium. en D. bonjeanii De Not. met de meer beperkt verspreide D. howellii Renauld &
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Cardot (Noord-Amerika), D. lorifolium Mitt., D. japonicum Mitt. en D. nipponense Besch. (Azig)
die gezamenlijk kunnen worden beschouwd als het D. scoparium soortencomplex. Echter, andere
soorten uit de sectie Dicranum, namelijk D. majus Turner en D. polysetum Sw. zijn gescheiden van het
D. scoparium complex hoewel morfologische verwarring met D. scoparium vaak voorkomt. Onze
uitgebreide geografische bemonstering van D. scoparium, inclusief Noord-Amerikaanse, Europese en
Aziatische exemplaren, en tevens vitgebreide bemonstering van de morfologische kenmerkvariatie
onthulde een monofyletische groep, gedefinieerd als D. scoparium s.s., die overeenkomt met het
morfologische concept van deze soort: de bladeren zijn recht tot homotroop gekromd en eindigen
in een gekielde apex, de bladranden zijn gezaagd, de bladnerf is percurrent met vier gezaagde
lamellen op de dorsale zijde en verscheidene stereide banden zijn zichtbaar in dwarsdoorsnede,
de bladcellen zijn prosenchymatisch en poraat. Echter, D. crassifolium Sérgio, Ochyra & Séneca
komt ook overeen met D. scoparium s.s. ondanks het tweelagige blad en getande bladranden
(hoofdstuk 5). Bovendien zijn verscheidene D. scoparium-achtige exemplaren vit Noord-Amerika
(D. cf. scoparium) gescheiden van D. scoparium s.. en clusteren ze met D. leioneuron Kindb.

(hoofdstuk 5).

Wat zijn D. bardunovii en D. septentrionale? Zijn het aparte soorten? Zijn hun morfologische
kenmerken voldoende om ze te onderscheiden van de nauwverwante soorten D. acutifolium en D.

brevifolium?

Twee nieuwe soorten zijn recentelijk beschreven uit Rusland: D. bardunovii Tubanova &
Ignatova en D. septentrionale Tubanova & Ignatova. Deze twee soorten lijken in veel kenmerken op
D. acutifolium en D. brevifolium en worden gemakkelijk over het hoofd gezien. De vier genoemde
soorten worden daarom beschouwd als een complex van soorten, namelijk het D. acutifolium
soortcomplex. De ontdekking van D. bardunovii en D. septentrionale is gebaseerd op fylogenieén
die alleen gebruik maken van de nucleaire spacer nriTS regio (Tubanova et al. 2010; Tubanova &
Ignatova 2011). Hoewel deze merker vaak als geschikt wordt beschouwd voor soortsbegrenzing
(Chen et al. 2010; Liv et al. 201 1), ontbraken bij de soortomschrijvingen in Dicranum ondersteuning
en resolutie (Lang & Stech 2014, hoofdstuk 1) door de doorgaans lage genetische variabiliteit in de
Dicranaceae (Stech 1999; La Farge et al. 2002). Verdere merkers zijn bijgevolg noodzakelijk voor
het verkrijgen van duidelijkere soortomschrijvingen (Lang & Stech 2014). Daarom onderzochten wij
de moleculaire verwantschappen van het D. acutifolium soortcomplex en zijn naaste verwanten door
aanvullende chloroplast merkers met de bestaande ITS-fylogenie te combineren; ook analyseerden
wij de relevante morfologische kenmerken. De gecombineerde moleculaire analyse bevestigt de
resultaten van Tubanova et al. (2010) en Tubanova & Ignatova (2011). Hoewel de begrenzing
van D. septentrionale nu significant ondersteund is, blijft de omgrenzing van D. bardunovii minder
duidelijk. De kenmerken die de soorten D. bardunovii, D. acutifolium en D. brevifolium en vooral D.
septentrionale onderscheiden zijn onopvallend en worden gemakkelijk over het hoofd gezien. De
herkenning van deze soorten wordt bovendien bemoeilijkt door het bestaan van mengcollecties,
zoals geillustreerd bij het holotype van D. bardunovii, dat ook individuen van D. acutifolium bevat. In
overeenkomst met eerdere morfologische en fylogenetische analyses (e.g. Sukkharak et al. 2011;
Carter, 2012; Medina, 2012; Stech et al. 2013; Lang & Stech, 2014) benadrukt dit onderzoek
het belang van moleculaire data om soortsomschrijvingen te verduidelijken.



Is barcodering een methode die gebruikt kan worden om Dicranum soorten te identificeren? Hoe
presteren barcode merkers in termen van soortsidentificatie®

Soorten correct op naam te kunnen brengen is belangrijk in biodiversiteitsevaluaties,
ecologie en natuurbescherming (Cornelissen et al. 2007; Dinnage et al. 2012; Steele & Pires
2011; Winter et al. 2013), maar morfologische identificatie van organismes met gereduceerde
maaten zoals bryofyten kan zeer moeilijk zijn. Dit geldt in het bijzonder voor Arctische mossoorten,
waarvan de kenmerken van de gametofyten extreem afwijkende morfologieén laten zien en
waar de sporofyten bijna altijd afwezig zijn (Bellolio-Trucco & Ireland 1990; Hedends & Bisang
2004; Hesse et al. 2012). Het gebruik van DNA-barcodes is een alternatieve methode om
soortsomgrenzing te onderzoeken. In hoofdstuk 4 tonen wij aan dat de moleculaire omschrijving
van Arctische Dicranum soorten moleculair omschreven kunnen worden door een combinatie van
een aantal barcode merkers. Analyses van elke individuele merker tonen echter aan dat zij weinig
interspecifieke variabiliteit bezitten. Bovendien faalt de nrITS regio in het onderscheiden van de
bestudeerde Dicranum soorten. De combinatie van de meest-gebruikte merkers, trnT- rps4, trnlL-F,
psbA-trnH en nriTS, heeft duidelijk het grootste potentieel als barcode merker in Dicranum.

Is _geautomatiseerde soortsomgrenzing congruent met het morfologische concept van de
Europese soorten?

Gegeneraliseerde ‘mixed Yule coalescent’” methodes (GMYC) of ‘Poisson tree’ processen
(PTP) soortbegrenzingmethodes die gebaseerd zijn op ‘likelihood’ (ML) fylogenetische inferenties
(Pons et al. 2006; Monaghan et al. 2009). Terwijl GMYC een tijd-gekalibreerde stamboom nodig
heeft, werkt PTP ook met standaard fylogenetische stambomen. Gebaseerd op een fylogenetische
reconstructie die 28 van de 30 Dicranum soorten van Europa omvat, is het aantal entiteiten
teruggevonden met GMYC en PTP methodes tussen de 34 en 58, respectievelijk 37 entiteiten
(hoofdstuk 5). Als men het GMYC model met enkele drempelwaarde en de ML stamboom verkregen
met PTP in beschouwing neemt, dan zijn beide methodes relatief congruent met respectievelijk
34 en 37 species. Deze schattingen zijn echter hoger dan het aantal morfologische soorten. De
overschattingen betreffen D. scoparium maar ook D. viride, D. fragilifolium, D. fuscescens en D.
polysetum. Simulaties tonen aan dat een ongebalanceerde dataset en een lage intraspecifieke
genetische variabiliteit waarschijnlijk het aantal haplotypen van overbemonsterde soorten zullen
laten toenemen (Bergsten et al., 2012; Zhang et al., 2013). In die gevallen zal elk exemplaar van
een soort met een kleine steekproef kunnen worden beschouwd als een aparte entiteit (Zhang et
al. 2013). In ons onderzoek verminderden analyses op een gereduceerde dataset niet het aantal
potentiéle soorten. Daarom heeft het effect van ongebalanceerde bemonstering waarschijnlijk
minder invloed op soortsomgrenzingen dan de normaalgesproken lage genetische variabiliteit
binnen het geslacht Dicranum.

Ondanks het overschatte aantal soorten verkregen met de geautomatiseerde
schattingsmethoden, bakenen de verkregen clades soorten af die meestal congruent zijn met de
actuele morfologische omschrijvingen. Moleculaire fylogenetische analyses brengen ook nuttige
inzichten in verscheidene morfologische soorten zoals D. leioneuron, D. crassifolium, D. scottianum,
D. canariense, D. angustum, D. laevidens of soorten van het D. acutifolium complex (hoofdstuk 3, 4,
5), waarvan de taxonomie tot nu toe onduidelijk was. Bovendien heeft de verdeling van het genus
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in secties geen biologische betekenis, zoals aangetoond wordt in de fylogenetische stamboom in
hoofdstuk 5.

Toekomstige studies

In dit proefschrift hebben wij aangetoond dat moleculaire methodes geschikt zijn
om moleculaire omgrenzingen van een aantal Dicranum soorten op te helderen en om de
verwantschappen binnen soortcomplexen te onderzoeken. Hoewel de moleculaire clades van de
meeste van de onderzochte taxa significant werden ondersteund, waren drie Europese soorten
niet te onderscheiden van andere soorten (D. crassifolium van D. scoparium, D. scottianum van
D. canariense, D. elongatum van D. fragilifolium). Verder groepeerde D. leioneuron met Noord-
Amerikaanse exemplaren van D. scoparium ondanks duidelike morfologische verschillen tussen
de twee soorten. Een gedetailleerde herinterpretatie van de morfologische verschillen en een
heronderzoek van diagnostische kenmerken dient te worden uitgevoerd. Bovendien moet de
soortomgrenzing van drie Europese soorten, D. fulvum, D. muehlenbeckii en D. transylvanicum, verder
worden onderzocht waarvan geen materiaal ter beschikking stond voor moleculaire analysen.
Morfo-moleculaire analyses van de drie ontbrekende soorten zou ons in staat stellen om hun
genetische verwantschap beter te begrijpen.

De bemonstering van dit proefschrift representeert ruwweg een derde van de bekende
Dicranum soorten. De ontbrekende taxa komen voornamelijk voor in Azié en Amerika. Een complete
revisie van alle Dicranum soorten omvat, zou ons in staat stellen om onze kennis van dit soortenrijke
genus te voltooien.

Bovendien, zou de analyse van meer variabele merkers en van microsatellieten kunnen
helpen om de relaties tussen de verschillende taxa te begrijpen, om de invloed van mannelijke
dwerggroei op de reproductie van de soorten te onderzoeken, en de vraag te beantwoorden in
hoeverre hybridisatie in Dicranum voorkomt.
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APPENDIX 2.
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ArPENDIX 2. General mixed Yules coalescent (GMYC) multiple threshold model from plastid
and nuclear data. Branch length fitted a strict molecular clock, with estimated entities indicated in
colors fitting the lineages-through-time plot for multiple GMYC thresholds.

103



APPENDIX 3.
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Appenpix 3. PTP ML partitions obtained from http://species.h-its.org/. Species boundaries are
indicated in red.

104



_G_L .05 Dscoparium_Ka_2031
0.

.01 Dscop_Dcrassi_PT_5
9 .90 Dscop,_crassi_PT_6
.00 Dscop_crassi_PT_8

.02 Dscop_Dcrassi_PT_7

-10Dscop_Dcrassi_PT_4
8 Dscoparium_Db_CA

.05 Dscoparium_Mad_2
.92 Dscoparium_HUN_1
.01 Dscoparium_MAC_1
.01 Dscoparium_Ast_3011
-9 Dscoparium_NV_3
9 Dscoparium_FR_1

L Dscoparium_Vg_2111
P Dscoparium_Ru_14
D:

0. 10.15 Dscoparium_Nv_
10.16 Dscoparium_Ds_093
1o.0. \18 Dscoparium_NO_6
19 Dscoparium_Tx_1011
20 Dscoparium_Vg_2072
122 Dscoparium_Tx_1021
0.23 Dscoparium_Ds_04217
.23 Dscoparium_Cor_1
\23Dscoparium_NO_1
o i \05 Dscoparium_Mad_1
X!

'°‘£ .92 Dscoparium_NO_3
02 Dscoparium_NO_5
p£ .95 Dscoparium_Ast_2011
.5 Dscoparium_Ast_1011
14 Dscoparium_PT_1
Ji.w Dbrevifolium_20
.20 Dbrevifolium_CH1
2. .05 Dbrevifolium_26
,_i 105 Dbrevifolium_SE_15
122 Dbrevifolium_21
40 Dacutifolium_Dic_1644
E 1{.2.3 Dacutifolium_Dic_1660

0.1 0

-5 Dacutifolium_Dac
1) o°9? Dacutifolium_Dic_1676
.04204 Dacutifolium Dic_1649
01 Dacutifolium_Dic_1661
gi.u Dangustum_SE_30
.11 Dangustum_SE_21
116 Dangustum_SE_4
J 04704 Dangustum_SE_22
. 04
04 Dangustum_SE_27
X 1‘;'0" Dangustum_SE_24
,0f .u.f; .01 Dangustum_SE_25
103 Dangustum_SE_28
19 Dangustum_SE_31
92 Dmajus_DS_4
.01 Dmajus_Dspa
-01 Dmajus_Dib
0. u,ﬂ"’“ Dmajus_Attu_1
X ,ﬁ 00 Dmajus_Alk_1
.01 Dmajus_1664
10 Dmajus_Ru_1
36 Dmajus_Aleu_2

-98 Dpolysetum_Dpol_3

iz 61 Dpolysetum_Dip
-3 a9 Dpolysetum_Dpol_1
119 Dpolysetum_Dpol_2

=

0 Ddrummondii_Ddr
Ddispersum_DE_2
02 Dseptentrionale_SE_12
& .o,ﬁ""” Dseptentrionale_SE_14
1, 100 Dseptentrionale_SE_11
> 07793 Dseptentrionale_SE_13
02 Dseptentrionale_SE_16
"'{ 115 Dseptentrionale_SE_17
142 Dseptentrionale_Dbr
‘0#-85 Dseptentrionale_25
.86 Dseptentrionale_23
36 Dlaevidens_Dic_1651
bo 36 Dlaevidens_Dic_1672
14714 Dlaevidens_Dic_1655
o X
¥ _1{ .14 Dlaevidens_Dic_1653
{ \28 Dlaevidens_Dic_1652
.J{ 43 Dlaevidens_Dic_1663
-1 158 Dlaevidens_Dic_1662
.11 Dlaevidens_SE_5
92 Dlaevidens_SE_6
.03 Dlaevidens_SE_7
27 Dlaevidens_SE_8

.5 0]

APPENDIX 3. suite

0. Dscoparium_KR9
X A00) scoparium_Ch_1061
Dscoparium_BCo_1
o ) Dscoparium_Is_10
: Dscoparium_DB_1?
0.0/ Dscoparium_DB3
Dscoparium_Ps_1
0 oo Dscoparium_L&A_1
0. : -90 Dscoparium_BUL_1
0,00 Dscoparium_GR_1
0.00] 900 Dscoparium_Gi_1011
|9 .00 Dscoparium_SDka_1
.09 .
rp_op -Dscoparium_Or_1
0 ‘Dscoparium_BC_2
.00 Dscoparium_Cauc_1
:02 Dscoparium_Ds_10009
10.03 Dscoparium_GL_1
_Ig.m’ Dscoparium_Ast_3031
99 Dscoparium_Ast_3021
1
18

105



APPENDIX 4 GMYC tree obtained from a reduced dataset

a)

b)

20

10
|

Time

GMYC ultrametric tree depicting species delimitation of 20 morpho-species Dicranum
based on Bayesian analysis using a Yule model in BEAST and with fit of the general mixed Yules
coalescent (GMYC) single threshold model from plastid and nuclear data. Branch length fitted a
strict molecular clock, with estimated entities indicated in red. (a). Lineages-through-time plot for
single (b) GMYC threshold is illustrated. The vertical red line represent the timing of the earliest
coalescent event.
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GMYC ultrametric tree depicting species delimitation of 20 morpho-species Dicranum with fit
of the general mixed Yules coalescent (GMYC) multiple threshold model from plastid and nuclear
data. Branch length fitted a strict molecular clock, with estimated entities indicated in colors (a)
fittinng tha lineages-through-time plot for multiple GMYC threshold (b). The vertical color lines
represent the timing of the four coalescent event.
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