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 signaling pathways. Although only BSK1 and
 BSK2 were identified in the proteomic study,
 additional members (BSK3 and BSK5) of this
 family of RLCKs appear to play a similar role in
 BR signaling. Our results support a model for
 the function of BSKs in BR signaling (Fig. 4F).
 In the absence of BR, BSKs are associated with
 BRI1. Upon BR activation of BRI 1, BSKs are
 phosphorylated and then disassociate from the
 receptor complex to activate downstream sig
 naling. Such ligand-induced disassociation from
 a preexisting receptor complex potentially pro
 vides faster signaling than does ligand-induced
 recruitment of a free component into the recep
 tor complex.

 Both BSKs and BAK1 are substrates of the
 BRI 1 kinase, but several lines of evidence indi
 cate that they play distinct roles in BR signaling.
 First, BR induces BRI1-BAK1 interactions (6) but
 reduces BRI1-BSK1 and BRI1-BSK3 interactions.

 Second, overexpression of BSK3 suppresses
 the bril-116 null al?ele, whereas overexpres
 sion of BAK1 only suppresses weak al?eles but
 not a strong al?ele of bril nor a double mutant
 containing the weak bril-5 al?ele and the BR
 biosynthetic mutation det2-l (19). This suggests
 that BSK3 functions downstream of BRI 1, whereas

 BAKl's action on the downstream BR response
 requires a functional BRI1. BAK1 and its homolog

 BKKl are required in additional signaling path
 ways, and BAK1 is also a co-receptor for the
 FLS2 receptor kinase (a receptor for flagelin),
 suggesting that BAK1 is not a specific compo
 nent of the BR pathway (22-25). BAK1 most
 likely mediates activation of BRI 1 kinase rather
 than signal transduction to specific downstream
 components in the BR signaling pathway. In con
 trast, the BSKs directly mediate signal trans
 duction from BRI1 to downstream BR responses
 (Fig. 4F). Identification of the downstream direct
 targets of BSKs will be the key to fully under
 standing how the BR signal is transduced from the
 cell surface to the nuclear transcription factors.
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 One-Third of Reef-Building Corals
 Face Elevated Extinction Risk from

 Climate Change and Local Impacts
 Kent E. Carpenter,1* Muhammad Abrar,2 Greta Aeby,3 Richard B. Aronson,4 Stuart Banks,5
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 The conservation status of 845 zooxanthellate reef-building coral species was assessed by using
 International Union for Conservation of Nature Red List Criteria. Of the 704 species that
 could be assigned conservation status, 32.8% are in categories with elevated risk of extinction.
 Declines in abundance are associated with bleaching and diseases driven by elevated sea surface
 temperatures, with extinction risk further exacerbated by local-scale anthropogenic disturbances.
 The proportion of corals threatened with extinction has increased dramatically in recent decades
 and exceeds that of most terrestrial groups. The Caribbean has the largest proportion of corals in
 high extinction risk categories, whereas the Coral Triangle (western Pacific) has the highest
 proportion of species in all categories of elevated extinction risk. Our results emphasize the
 widespread plight of coral reefs and the urgent need to enact conservation measures.

 Coral reefs harbor the highest concentra
 tion of marine biodiversity. They have
 high aesthetic, recreational, and resource

 values that have prompted close scientific
 scrutiny, including long-term monitoring (/, 2),
 and face increasing threats at local and global

 scales. Globally, rapid buildup of carbon dioxide
 (and other greenhouse gases) in the atmosphere is
 leading to both rising sea surface temperatures
 (with an increased likelihood of mass coral
 bleaching and mortality) and acidification (3).
 Ocean acidification is reducing ocean carbonate

 ion concentrations and the ability of corals to
 build skeletons (4). Local threats include human
 disturbances such as increased coastal develop
 ment, sedimentation resulting from poor land-use
 and watershed management, sewage discharges,
 nutrient loading and eutrophication from agro
 chemicals, coral mining, and overfishing (/,2,5-9).
 Local anthropogenic impacts reduce the resil
 ience of corals to withstand global threats, re
 sulting in a global deterioration of reef structure
 and ability of these ecosystems to sustain their
 characteristic complex ecological interactions
 (1-3, 5-9).

 In view of this ecosystem-level decline, we
 used International Union for Conservation of

 Nature (IUCN) Red List Categories and Criteria
 to determine the extinction risk of reef-building
 coral species. These criteria have been widely
 used and rely primarily on population size
 reduction and geographic range information to
 classify, in an objective framework, the extinc
 tion risk of a broad range of species (10). Cate
 gories range from Least Concern, with very little
 probability of extinction, to high risk, Critically
 Endangered (Table 1 ). The threatened categories
 (Vulnerable, Endangered, and Critically Endan
 gered) are intended to serve as one means of set
 ting priority measures for biodiversity conservation.

 Our assessments of extinction risk cover all

 known zooxanthellate reef-building corals and
 include 845 species from the Scleractinia plus
 reef-building octocorals and hydrocorals (fami
 lies Helioporidae, Tubiporidae, and Millepori
 dae). Corals have persisted for tens of millions of
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 years, and the many widespread species in
 particular are not obvious candidates for extinc
 tion. However, periods of mass coral extinctions
 are known from the fossil record (11, 12), so
 conditions must have persisted that allowed
 populations to be reduced below sustainable
 levels. Up to 45% of all coral species went
 extinct around the Cretaceous-Tertiary boundary,
 with significantly more zooxanthellate than
 azooxanthellate extinctions (13). With reports of
 current widespread reef destruction (2) and
 unprecedented population declines in particular
 species (14,15), we used IUCN Red List Criteria
 to investigate whether present conditions have
 placed corals at elevated extinction risk.

 Nearly all extinction risk assessments were
 made with the IUCN criterion that uses measures

 of population reduction over time (10). Most reef
 building corals do not have sufficient long-term
 species-specific monitoring data to calculate actual
 population trends; consequently we used widely
 cited and independently corroborated estimates of

 reef area lost (2, 10) as surrogates for population

 1IUCN (International Union for Conservation of Nature) Species
 Programme Species Survival Commission (SSO and Conservation
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 Atmospheric Administration (NOAA) Fisheries and NOAA Coral
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 7Brown University, Providence, Rl 02912, USA. 8Centro de Inves
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 Research, Townsville, Queensland 4811, Australia. nCenter for

 Applied Biodiversity Science (CABS), CI, Arlington, VA 22202,
 USA. ^Tasmanian Aquaculture and Fisheries Institute, University
 of Tasmania, Hobart, Tasmania 7011, Australia. ^School of Biol

 ogy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
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 Aquaculture, Minggu, Jakarta Selatan, Indonesia. 19Biology De
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 Manila, Philippines. 20School of Marine Studies, University of the
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 reduction. These estimates suffer from lack of

 standardized quantitative methodology, and so we
 interpreted them conservatively and weighted
 declines both regionally and by species-specific
 life history traits, including susceptibility to the
 threats causing reef area declines (70). Therefore,

 rates of population decline for each species have
 their basis in the rate of habitat loss within its range

 adjusted by an assessment of the species-specific
 response to habitat loss (so more-resilient species
 have slower rates of decline) (10).

 Of the 845 reef-building coral species, 141
 had insufficient data to complete a Red List as
 sessment (Table 1) and were excluded from
 subsequent calculations. Of the remaining 704
 species, 231 are listed in the threatened categories,

 whereas 407 are in threatened and Near Threat

 ened categories combined (Table 1). Species in the
 families Euphylliidae, Dendrophylliidae, and
 Acroporidae are particularly at risk, with more

 REPORTS

 than or close to 50% of species in a threatened
 category; the figures are around 40% for Mean
 drinidae and Oculinidae. Heliopora coerulea, the
 sole extant member of the ancient family Helio
 poridae, is rated as Vulnerable. The only species
 that do not fall within threatened categories are
 those that inhabit deeper, lower reef slopes and
 those not solely dependent on reef habitats (i.e.,
 inter-reefal species). The Caryophyllidae, Astro
 coeniidae, Merulinidae, and Fungiidae have the
 lowest proportions of threatened species.

 In terms of species-specific vulnerability to
 impacts, about 40% of the 704 species are pri

 marily reef-restricted, shallow water corals (<20 m
 depth) (10) that are susceptible to general anthro
 pogenic disturbances. The remaining 60% of spe
 cies can survive on deeper reefs (>20 m depth), in

 marginal reef habitats, or in off-reef areas. There

 are 303 species highly susceptible to bleaching,
 although 102 of these typically grow quickly and

 Table 1. Current Red List Categories for reef-building coral species by family. Percentages in
 threatened categories (Thr) include all non-data-deficient species listed as VU, EN, or CR, whereas
 Near Threatened and threatened (NT + Thr) include all non-data-deficient species listed as NT, VU,
 EN, or CR.

 Family  DD LC  NT VU  EN  CR Total species NT + Thr  Thr

 Acroporidae
 Agariciidae
 Astrocoeniidae

 Caryophylliidae
 Dendrophylliidae
 Euphylliidae
 Faviidae
 Fungiidae
 Helioporidae
 Meandrinidae
 Merulinidae
 Milleporidae
 Mussidae
 Oculinidae
 Pectiniidae

 Pocilloporidae
 Poritidae
 Rhizangiidae
 Siderastreidae

 Trachyphyliidae
 Tubiporidae

 81
 3

 1
 3
 5
 2

 3
 1
 2
 7
 6
 5
 2

 10

 54
 26
 9
 3
 4

 43
 32

 4
 7
 8

 21
 3

 12
 15
 40
 1

 15

 42
 5
 1

 3
 5

 57
 5

 3
 1

 12
 3
 6
 5

 20

 6
 1
 1

 85
 11
 1

 7
 9

 22
 5
 1
 2

 2
 11
 4
 5
 7

 25

 271
 45
 15
 3

 15
 17

 130
 46
 1

 10
 12
 16
 52
 16
 29
 31

 101
 1

 32
 1
 1

 71.6%
 38.1%
 18.2%
 0.0%

 71.4%
 100.0%
 65.6%
 27.3%

 100.0%
 42.9%
 36.4%
 42.9%
 53.3%
 70.0%
 50.0%
 48.3%
 56.0%
 0.0%

 42.3%
 100.0%
 100.0%

 49.5%
 26.2%
 9.1%
 0.0%

 50.0%
 64.3%
 20.0%
 15.9%

 100.0%
 42.9%
 9.1%
 35.7%
 26.7%
 40.0%
 25.0%
 31.0%
 34.1%
 0.0%

 19.2%
 0.0%
 0.0%

 Total  141 297 176 201 25  845

 Fig. 1. Comparison of current Red List
 categories for all reef-building coral spe
 cies to hypothetical Red List Categories
 back-cast to pre-1998. CR indicates Criti
 cally Endangered; EN, Endangered; VU,
 Vulnerable; NT, Near Threatened; LC, Least
 Concern; and DD, Data Deficient.

 o 400

 E
 z
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 I Pre-1998 Red List
 F20S Current Red List

 LC NT VU EN
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 populations recover within a few years (7). About
 52% of the bleaching-susceptible species (mainly
 in the Acroporidae) are also heavily affected by
 disease and pr?dation from the crown-of-thorns
 seastar, Acanthaster planci. Acroporid corals
 account for a high percentage of coral cover on
 reefs (//, 12) and for a high proportion of the
 threatened species (Table 1). Eighty species are
 considered resistant to bleaching and include
 mostly members of the genera Favia and Pontes.

 Our results indicate that the extinction risk of

 corals has increased dramatically over the past
 decade (Fig. 1). By using the values from pre
 vious reports of the Global Coral Reef Moni
 toring Network (16), we determined extinction
 risk levels before the 1998 massive bleaching
 events (10). Before 1998, 671 of the 704 data

 sufficient species would have been categorized as
 of Least Concern, 20 as Near Threatened, and
 only 13 in threatened categories. Although an
 estimated 6.4% of reefs recovered from the 1998

 bleaching event about 5 years after it occurred,
 16% were considered irreversibly destroyed after
 subsequent monitoring (2). Another study shows
 an increasing rate of coral cover loss in the Indo
 Pacific of 1 to 2% per year since 1997 (9).

 The proportion of threatened (not including
 Near Threatened) coral species exceeds that of
 most terrestrial animal groups apart from am
 phibians, particularly because of corals' apparent
 susceptibility to climate change (10). At slightly
 elevated sea surface temperatures, corals expel
 their symbionts, often resulting in colony death if
 the heat stress persists (7). Adult reef-building

 corals are restricted to well-lit tropical waters and
 are sessile, not having the option to move to
 cooler water. This also makes them susceptible to
 localized disturbances that can magnify the stress
 on a system already affected by warming seas.

 Regionally, Caribbean reefs (Fig. 2) have been
 devastated by population declines of two key
 species, Acropora cervicornis (staghom coral) and
 A. palmata (elkhorn coral) (14, 15, 17), which
 were recently listed as threatened under the U.S.
 Endangered Species Act. They were spatial
 dominants and primary framework builders during
 the Pleistocene and Holocene; their loss has had a

 major ecological impact (14, 15). Another major
 Caribbean reef-builder, Montastraea annularis,
 has been listed as Endangered because of a rapid
 population decline over the past decade; on many

 0.16-2

 1.16-10 I
 10.01-20 1

 2.01-4 I I 4.01-6 ?6.01-8

 | 20.01-30 | | 40.01-50
 | 30.01-40 | 150.01-60

 ] 60.01-70
 ?70.01-80

 80.01-90

 90.01-100

 Fig. 2. (A) Critically Endangered species as percent of total species in area, (B) Endangered, and Vulnerable) as percent of total species in area, and (D) spe
 Critically Endangered and Endangered species as percent of total species in des in threatened and Near Threatened categories as percent of total species in
 area, (C) species in all threatened categories (Critically Endangered, area. Calculations are based on a cell size of 10 km2.
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 REPORTS I
 reefs it is no longer dominant (10). It is the largest
 coral species in this region, has very slow
 recruitment (18), and is also highly susceptible to
 disease that can kill 500-year-old colonies within
 months, with recovery unlikely for decades.

 In the eastern tropical Pacific, a high propor
 tion of corals have been affected by warming
 events. However, subsequent monitoring has
 shown reefs are recovering in most areas across
 the region (79). Indian Ocean corals were the most
 affected by the 1998 warming event with two
 subsequent bleaching events in some places.

 Many of the shallow reefs have lost their three
 dimensional rugosity, with cascading trophic and
 ecological effects including subsequent loss offish
 populations (20). Other reefs are recovering their
 structure, but the time to complete recovery may
 range to decades and will be highly dependent on
 future climatic and local disturbance regimes.

 The epicenter of marine biodiversity in the
 Indo-Malay-Philippine archipelago, the Coral

 Triangle (11, 21), has the highest proportion of
 Vulnerable and Near Threatened coral species
 (Fig. 2, C and D). The chronic nature of anthro
 pogenic disturbance in many parts of this region
 is compounded by the effects of climate change.

 Corals in oceanic islands of the Pacific
 generally have the lowest proportion of threat
 ened species (Fig. 2), and Hawaiian reefs have
 been spared extensive coral loss from bleaching
 or disease (22-25). However, Hawaii is an
 isolated archipelago with high levels of ende

 mism (23), and several rare endemic species may
 prove especially vulnerable to future threats.

 Our analysis indicates that the extinction risk
 for many corals is now much greater than it was
 before recent massive bleaching events. Whether
 corals actually go extinct this century (12) will
 depend on the continued severity of climate
 change, the extent of other environmental distur
 bances, and the ability of corals to adapt If bleach
 ing events become very frequent, many species

 may be unable to reestablish breeding populations
 before subsequent bleaching causes potentially
 irreversible declines, perhaps mimicking condi

 tions that led to previous coral extinctions (75). If
 corals cannot adapt, the cascading effects of the
 functional loss of reef ecosystems will threaten
 the geologic structure of reefs and their coastal
 protection function and have huge economic
 effects on food security for hundreds of millions
 of people dependent on reef fish. Our consensus
 view is that the loss of reef ecosystems would
 lead to large-scale loss of global biodiversity.
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 Eco1-Dependent Cohesin
 Acetylation During Establishment of
 Sister Chromatid Cohesion
 Tom Rolef Ben-Shahar,1* Sebastian Heeger,1* Chris Lehane,1* Philip East,2 Helen Flynn,3
 Mark Skehel,3 Frank Uhlmann't

 Replicated chromosomes are held together by the chromosomal cohesin complex from the time of
 their synthesis in S phase onward. This requires the replication fork-associated acetyl transferase
 Ecol, but Ecol's mechanism of action is not known. We identified spontaneous suppressors of the
 thermosensitive ecol-1 al?ele in budding yeast. An acetylation-mimicking mutation of a conserved
 lysine in cohesin's Smc3 subunit makes Ecol dispensable for cell growth, and we show that Smc3 is
 acetylated in an Ecol-dependent manner during DNA replication to promote sister chromatid
 cohesion. A second set of ecol-1 suppressors inactivate the budding yeast ortholog of the cohesin
 destabilizer Wapl. Our results indicate that Ecol modifies cohesin to stabilize sister chromatid
 cohesion in parallel with a cohesion establishment reaction that is in principle Ecol-independent.

 The cohesin complex provides sister chro
 matid cohesion from the time of DNA

 replication onward until mitosis (M) (1,2).
 A number of cohesion establishment factors that do

 not themselves form part of the cohesive structure
 that links sister chromatids (3-9) ensure that
 cohesin engages in productive linkages between
 sister chromatids during the synthesis phase (S
 phase), the period of DNA replication in the cell
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 cycle. Of these factors, Ecol(Ctf7) is the only
 known essential protein. In its absence, cohesin
 associates with chromosomes before, during, and
 after S phase apparently normally (3, 10), yet co
 hesion between sister chromatids is not established.

 Ecol is a replication fork-associated acetyl trans
 ferase (10-12), suggesting a mechanistic link
 between replication-fork progression and cohesion
 establishment How Ecol promotes sister chroma
 tid cohesion, and the role of its acetyl transferase

 activity in this process, have remained unclear.
 When streaking ecol-1 thermosensitive budding

 yeast cells (3) at their restrictive temperature, we
 noticed among the dying cells the outgrowth of
 colonies that had gained resistance to Ecol inac
 tivation (Fig. 1A) (13). Backcrossing of 20 such
 colonies revealed that spontaneous mutations in
 three complementation groups, a to c, outside the

 ECOl locus, conferred thermor?sistant growth. We
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