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A chronological framework for the British
Quaternary based on Bithynia opercula
Kirsty E. H. Penkman1, Richard C. Preece2, David R. Bridgland3, DavidH. Keen4{, TomMeijer5, SimonA. Parfitt6,7, Tom S.White2

& Matthew J. Collins1

Marine and ice-core records show that the Earth has experienced a
succession of glacials and interglacials during the Quaternary (last
2.6 million years), although it is often difficult to correlate frag-

mentary terrestrial records with specific cycles. Aminostratigraphy
is a method potentially able to link terrestrial sequences to the
marine isotope stages (MIS) of the deep-sea record1,2. We have used
new methods of extraction and analysis of amino acids, preserved
within the calcitic opercula of the freshwater gastropodBithynia, to
provide themost comprehensive data set for the British Pleistocene
based on a single dating technique. A total of 470 opercula from 74
sites spanning the entire Quaternary are ranked in order of relative
age based on the extent of protein degradation, using aspartic acid/
asparagine (Asx), glutamic acid/glutamine (Glx), serine (Ser),
alanine (Ala) and valine (Val). This new aminostratigraphy is con-
sistent with the stratigraphical relationships of stratotypes, sites
with independent geochronology, biostratigraphy and terrace
stratigraphy3–6. Themethod corroborates the existence of four inter-
glacial stages between the Anglian (MIS 12) and the Holocene in the
terrestrial succession. It establishes human occupation of Britain in
most interglacial stages after MIS 15, but supports the notion of
human absence during the Last Interglacial (MIS 5e)7. Suspicions
that the treeless ‘optimum of the Upton Warren interstadial’ at
Isleworth pre-dates MIS 3 are confirmed. This new aminostratigra-
phy provides a robust framework against which climatic, biostrati-
graphical and archaeological models can be tested.
Despite the importance of the terrestrial record for climate models,

the difficulties of assigning specific sedimentary sequences to indi-
vidual climate cycles restricts the use of these data in climatemodelling.
The British Quaternary is exceptional for the number of recorded sites
and their biodiversity, which has fluctuated markedly due to the mid-
latitude situation of this ephemeral island. A consensus has emerged
from attempted differentiation between interglacials in Britain using
river terrace stratigraphy6,8 and biostratigraphy3–5 (Fig. 1).
This study revisits pioneering research undertaken on bivalves1

and gastropod shells2 that used the extent of racemization in the amino
acid L-isoleucine (to its diastereomer D-alloisoleucine, yielding a
D-alloisoleucine/L-isoleucine (A/I) value) in non-marine mollusc
shells to build an aminostratigraphy of terrestrial sequences that could
be linked to the marine oxygen isotope stratigraphy. Following debate
concerning certain correlations, we developed a revised method of
extraction and analysis9. Shells of freshwater gastropods (Bithynia
and Valvata) from many of the original sites10 have been re-analysed,
confirming much of the A/I stratigraphy. However, it emerged that
within-site and within-stage variability increases in shells from older
sites. This variability probably results from diagenetic alteration of the
biomineral carbonate from aragonite to the more thermodynamically
stable calcite10,11.

Ournewmethodhas five significant revisions, three ofwhich reduced
within-site variability. First, inter-species variation was minimised by
analysing only a single genus of freshwater gastropod (Bithynia).
Second, variability in amino acid concentration and D/L values was
significantly lowered when samples were crushed to# 500mm and
exposed to prolonged wet chemical oxidation (48 h, 12% w/v NaOCl,
room temperature), destroying any contamination and leaving a func-
tionally closed-system protein fraction defined as ‘intra-crystalline’9,12.
Third, the calcitic operculum, which in life closes the aperture of the
shell, was analysed instead of the aragonitic shell. Opercula display less
within-site variation and greater stability than shells10,11, and show
subtle but minimal intraspecific differences in racemization (Sup-
plementary Data 1). Further modifications included the analysis of a
range of different amino acids13 (rather than only a single measure of
racemization), which allows an estimate of ‘intra-crystalline protein
decomposition’ (IcPD). This integrates data from amino acids with
differing rates of racemization (Asx?Ala.Val<Glx)with the extent
of dehydration of serine (Ser to Ala concentration ratio) to estimate age
(Fig. 2). Finally, comparisons were made between free amino acids
(FAA), liberated by diagenesis, and the total extent of racemization
(THAA), in order to test closed-system conditions14.
The intra-crystalline fraction maintains constant chemical condi-

tions so that the extent of protein degradation can be attributed to the
thermal history of the sample. Within the study area differences in
thermal history have been minor during the past century and chiefly
related to burial depth and the thermal diffusivity of the overburden,
mediated by the presence/absence of vegetation and/or snow cover
(Supplementary Fig. 1 and Discussion). Opercula with similar levels
of protein degradation are therefore thought to be of equivalent age,
assuming that similarly small thermal gradients existed during past
interglacials, when most of the racemization would have occurred.
The consistency of our method has been tested by measuring

opercula from British interglacial stratotypes and/or sites with inde-
pendent geochronology (Fig. 1, Fig. 2 and Supplementary Data 1). All
stratotypes yielding Bithynia have been analysed, but stratotypes have
not been formally defined for all stages15. Sites with independent geo-
chronology can be used to calibrate IcPD results but, as only seven of
our pre-Holocene sites have associated dates, we have not done this
here. Nevertheless, an age-dependent increase in the level of IcPD is
seen from the Holocene to the Early Pleistocene, using a combination
of fast (for example, Asx) and slow (for example, Val) racemizing
amino acids to span this range.
Increasing protein decomposition within opercula is also consistent

with increasing river terrace elevation (and therefore age) in
Quaternary fluvial archives (Figs 1 and 3 and Supplementary Data 1
and 2). The formation of river terraces is attributed to climatic forcing
and uplift, linking aggradation and incision phases with climatically
induced changes in sediment and water supply6,8,16. Assemblages of
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amino acid values from the Thames sequence, the most complete
British fluvial archive17–19, clearly correspond with discrete terrace
aggradations (Fig. 3 and SupplementaryData 2). Four interglacials after
the Anglian (MIS 12) stage are represented in this system, assigned to
MIS 11, 9, 7 and 5e on the basis that each aggradation formed during a
complete glacial/interglacial cycle6,16. Although this relationship might
not hold for all rivers20, a similar pattern exists between D/L values and
terraces in other systems, such as the Severn/Avon21, Trent/Witham22

and Nene/Welland23. Support for these interpretations comes from
integrating several lines of evidence (for example, biostratigraphy4,5

and some of the original A/I data16), not all of which are wholly inde-
pendent. However, the ability of the method to differentiate between
terrace aggradations (Supplementary Data 2) is not reliant on other
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1 Acle (modern) le 3 0.04 0.00 0.02 0.00

1 Acle (modern) te 2 0.04 0.00 0.02 0.00

2 Enfield Lock te 4 0.05 0.01 0.03 0.01 1

3 Quidenham Mere, 250–260 cm te 4 0.05 0.01 0.03 0.00 1

3 Quidenham Mere, 640–650 cm te 3 0.05 0.01 0.03 0.00 1

4 Newby Wiske te 3 0.06 0.01 0.04 0.00 1

5 Aston-upon-Trent te 4 0.06 0.00 0.04 0.00 1

6 Star Carr, 245–250 cm te 2 0.07 0.01 0.04 0.00 1

7 Sproughton te 4 0.09 0.00 0.05 0.00 2

6 Star Carr, 524–528 cm te 3 0.10 0.02 0.04 0.00 2

8 Cassington te 4 0.12 0.01 0.07 0.00 Th 5c-4

9 Isleworth te 4 0.14 0.01 0.07 0.01 Th

10 East Mersea (Restaurant) te 2 0.16 0.02 0.08 0.01 5e

11 Coston te 3 0.17 0.00 0.08 0.00 5e

12 Maxey te 4 0.17 0.03 0.08 0.02 NW

13 Woolpack Farm te 1 0.17 0.00 0.09 0.00

14 Jaywick Sands te 4 0.17 0.01 0.09 0.01

15 Saham Toney, 92 te 4 0.17 0.00 0.10 0.01

16 Itteringham te 1 0.18 0.00 0.09 0.01

17 Tattershall Castle te 4 0.18 0.01 0.09 0.01 TW 5e

18 Bobbitshole te 3 0.18 0.01 0.10 0.00 5e

19 Shropham te 4 0.18 0.01 0.09 0.01 5e

20 Trafalgar Square te 6 0.19 0.01 0.10 0.01 Th 5e

15 Saham Toney, 94 te 2 0.19 0.00 0.11 0.01

21 Bardon Quarry, Area 3 te 3 0.19 0.02 0.09 0.01 TW

15 Saham Toney, 93 te 4 0.19 0.01 0.10 0.01

16 Itteringham, Bed d te 4 0.19 0.01 0.10 0.00

22 Eckington te 4 0.20 0.01 0.10 0.01 SA 5e

23 Cropthorne New Inn te 4 0.20 0.01 0.09 0.00 SA 5e

21 Bardon Quarry, Area 2 te 4 0.21 0.03 0.11 0.02

24 Funtham’s Lane East te 25 0.22 0.01 0.12 0.01 NW

25 Stanton Harcourt te 4 0.23 0.01 0.11 0.00 Th 7

26 Crayford te 4 0.24 0.00 0.12 0.01 Th 7

27 Barnwell te 2 0.24 0.01 0.12 0.01

28 Ailstone-on-Stour te 4 0.24 0.01 0.12 0.01 SA

29 Histon Road te 2 0.24 0.01 0.12 0.01

30 Strensham te 4 0.25 0.02 0.12 0.02 SA

31 Stutton te 4 0.25 0.01 0.14 0.01

32 Coronation Farm te 1 0.25 0.00 0.13 0.00 TW 7

33 Somersham te 4 0.25 0.01 0.12 0.00

34 Norton Bottoms te 15 0.25 0.01 0.13 0.01 TW 7

35 Block Fen te 4 0.25 0.02 0.13 0.01

33 Somersham tr 4 0.26 0.01 0.13 0.01

36 Ebbsfleet, U. loam, U. part te 1 0.26 0.01 0.14 0.00

36 Ebbsfleet, U. loam, L. part te 2 0.26 0.01 0.14 0.01

37 Brough te 6 0.27 0.01 0.16 0.01 TW 7

38 Ilford (Uphall Pit) te 2 0.27 0.01 0.14 0.02 Th 7

39 Maidenhall te 2 0.28 0.02 0.15 0.00

40 West Thurrock (Lion Pit), 4 te 25 0.29 0.01 0.15 0.01 Th 7

40 West Thurrock (Lion Pit), 2000 te 3 0.29 0.01 0.16 0.00 Th 7

36 Ebbsfleet, Lmst Brickearth te 3 0.30 0.01 0.15 0.01

41 Stoke Tunnel te 2 0.30 0.01 0.15 0.01

40 West Thurrock (Lion Pit), 3 te 25 0.30 0.01 0.16 0.02 Th 7

40 West Thurrock (Lion Pit), 6 te 5 0.31 0.01 0.16 0.01 Th 7

42 Selsey te 3 0.31 0.01 0.16 0.00

43 Aveley te 4 0.32 0.02 0.16 0.01 Th 7

44 West Wittering te 3 0.32 0.00 0.16 0.00

45 Bushley Green te 1 0.34 0.00 0.16 0.00 SA

46 Cudmore Grove te 4 0.34 0.02 0.19 0.01 Th 9

47 Hackney Downs te 2 0.34 0.01 0.17 0.01 Th 9

46 Cudmore Grove, sample PE te 2 0.36 0.00 0.20 0.00 Th 9

48 Belhus Park te 1 0.36 0.02 0.20 0.02 Th 9

49 Purfleet, 1 te 23 0.38 0.01 0.18 0.01 Th 9

50 Barling te 4 0.38 0.01 0.20 0.01 Th 9

49 Purfleet, 6 te 24 0.38 0.01 0.21 0.01 Th 9

51 Shoeburyness te 5 0.39 0.01 0.20 0.01

52 Grays te 2 0.40 0.01 0.20 0.00 Th 9

53 Marks Tey te 2 0.40 0.01 0.22 0.01 11

48 Belhus Park, BP18 te 4 0.40 0.01 0.21 0.01 Th 9

54 Trimingham te 13 0.40 0.01 0.22 0.01

55 Hoxne, Stratum B2, 64 te 4 0.40 0.02 0.22 0.01 11

56 Barnham, BEF92 tr 3 0.40 0.02 0.21 0.01 11

57 Elveden, ELV 96 te 2 0.41 0.01 0.20 0.01

57 Elveden, ELV 95 te 5 0.41 0.01 0.21 0.01

58 Swanscombe (Barnfield Pit) te 6 0.42 0.01 0.24 0.03 Th 11

56 Barnham, BEF93 te 6 0.42 0.02 0.20 0.02 11

59 Woodston te 4 0.42 0.01 0.23 0.01 NW 11

55 Hoxne, Stratum E te 4 0.42 0.01 0.23 0.01 11

60 West Stow (Beeches Pit) te 4 0.42 0.01 0.25 0.01 11

61 Dierden’s Pit (Ingress Vale) tr 2 0.43 0.01 0.22 0.01 Th 11

55 Hoxne, Stratum B2, 50 te 4 0.43 0.01 0.24 0.01 11

62 Southfleet Road te 7 0.43 0.01 0.22 0.01 11

61 Dierden’s Pit (Ingress Vale) te 4 0.45 0.01 0.21 0.01 Th 11

63 Clacton-on-Sea te 4 0.46 0.01 0.25 0.02 Th 11

64 Waverley Wood tr 6 0.48 0.03 0.27 0.03 13?

65 Sidestrand, Upper Unio-Bed te 7 0.54 0.02 0.29 0.01 13?

65 Sidestrand, Lower Unio-Bed te 5 0.55 0.01 0.29 0.01 13?

66 Sugworth tr 6 0.56 0.01 0.28 0.01 Th 15?

67 Little Oakley tr 2 0.56 0.00 0.28 0.00 15?

68 Pakefield, PaCii tr 4 0.57 0.03 0.30 0.01 17/15?

68 Pakefield, PaCi tr 3 0.58 0.01 0.35 0.02 17/15?

69 West Runton tr 11 0.61 0.02 0.33 0.01 17/15?

70 Bavel b/t 4 0.81 0.02 0.54 0.04 31?

71 Weybourne (Weybourne Crag) tr 2 0.89 0.01 0.69 0.03

72 Tegelen tr 4 0.90 0.01 0.75 0.03

71 Weybourne (Weybourne Crag) te 1 0.92 0.00 0.79 0.01

73 Thorpe Aldringham (N. Crag) sp. 1 0.94 0.00 0.84 0.04

74 Frechen (Pliocene) te 4 0.93 0.01 0.91 0.02
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Figure 2 | Amino acid decomposition at sites of known age. Comparison of
racemization in Bithynia opercula for FAA aspartic acid (Asx), THAA alanine
(Ala) and valine (Val) for all sites with independent geochronology. Y-axis
error bars indicate one standard deviation about the mean for the site. X-axis
error bars are not shown for the Early Pleistocene and Pliocene samples, as
these estimates of age are not based on numerical methods. Note the rapid
racemization in Asx at relatively young sites and the plateau beyond,0.5Myr;
Asx is therefore most valuable for separating sites younger than MIS 9. In
contrast, Val racemizes more slowly and provides poorer resolution for
younger sites, but is able to differentiate between sites back to the Pliocene.
Using several amino acids with different rates of degradation therefore enables
greater age resolution. The increase in racemization is not linear with time, but
slows during cold stages. Inset: shell (a) and operculum (b) of Bithynia
tentaculata.

Figure 1 | Intra-crystalline amino acid data from the opercula of Bithynia
from sites in southern Britain. Sites were chosen because they (1) are
stratotypes (in bold) of various interglacial stages, (2) have independent
geochronology, (3) occur within a fluvial terrace sequence, or (4) have relative
ages based on biostratigraphy (Supplementary Data 1). Some additional sites,
including three key continental Plio-Pleistocene localities, are listed to show
how they fit into this general framework. Sites are listed in rank order based on
the THAA Ala D/L value, the most useful single measurement covering the
timescales under discussion, but full interpretation requires consideration of
the overall IcPD (SupplementaryData 1). Our data are shown alongside terrace
stratigraphy (NW: Nene/Welland; SA: Severn/Avon; Th: Thames; TW: Trent/
Witham), occurrences of important biostratigraphic indicator species (?,
indirect association), in situ archaeology and existing consensus views on
correlation with the MIS record. Age attributions reliant on amino acid dating
alone are excluded. The occurrence of the water vole Arvicola (in grey) is only
shown for pre-Anglian sites (that is, pre-MIS 12).Mimomys is shown in brown.
Uptriangles, archaeology found in overlying sediments; downtriangles,
archaeology found in underlying sediments; crosses, archaeology from the
same horizon as the opercula analysed; diamonds, indirect association (that is,
archaeology recorded from the site but not this profile). Bithynia tentaculata
(L.) does not occur throughout the British Pleistocene, so where necessary we
have used other species of Bithynia (b/t, B. bavelensis/tentaculata; le, B. leachii;
te, B. tentaculata; tr, B. troschelii). L., lower; Lmst, lowermost; N., north; U.,
upper.
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data and sites where the age attribution is based fundamentally on
amino acid data are not assigned ‘consensus MIS ages’ in Fig. 1.
Bithynia is generally rare in cold-stage contexts, although it

occurred commonly in the ‘Upton Warren interstadial’ deposit at
Isleworth. This was originally thought to fall within the ‘Middle
Devensian’ (MIS 3) on the basis of a radiocarbon date of ,43 kyr
before present24. The Isleworth opercula IcPD is consistently higher
than that from Cassington, a site tentatively correlated with MIS 5a
(ref. 25), but lower than Last Interglacial opercula. Radiocarbon
therefore provides only a minimum age for the Isleworth deposits.
Our IcPDdata indicate an earlier age and suggest that this newmethod
can potentially be used to distinguish marine isotope sub-stages
beyond the limits of radiocarbon dating.
Aminostratigraphic data also provide independent support for bio-

stratigraphic age models developed for the Middle Pleistocene5,26,27. In
the earlyMiddle Pleistocene, the water voleArvicola is thought to have
replaced its ancestor Mimomys savini within a relatively short time
over large regions of Europe3,27. This hypothesis gains support from
our new data, which show that opercula from sites yielding Arvicola
show less protein degradation than those containingM. savini (Fig. 1).
The occurrence of Corbicula (a bivalve) and Hippopotamus in the

British Pleistocene is mutually exclusive5,26. At British sites securely
attributable to the Last Interglacial (MIS 5e) Corbicula is absent;
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terrace stratigraphy. a, b, Idealised transverse sections through the Lower
Thames terrace sequence19 (a) and THAA versus FAA D/L Ala (b). Data from
Thames sites (coloured) are superimposed on the full data set. D, Devensian.
Note the concordance of terrace aggradations with the extent of protein
degradation. This finding is consistent in all four river systems tested (Fig. 1 and
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unknown at British sites attributed to the Last Interglacial (MIS 5e). Opercula
have also been analysed from one Upper Palaeolithic and one Mesolithic site.
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conversely, after MIS 12, Hippopotamus is only known from the Last
Interglacial, and is therefore widely regarded as an ‘indicator species’
for MIS 5e4. Our data support these conclusions, as post-Anglian sites
with Hippopotamus show less protein breakdown than sites yielding
Corbicula, with levels of protein degradation consistent with attri-
bution to MIS 5e.
The comparisons above demonstrate the remarkable consistency of

our new method with independent lines of evidence. This com-
prehensive dating framework enables us to explore the British archae-
ological record. Our data show that human occupation occurred
within at least two distinct pre-Anglian stages, the older (Pakefield)
associated with Mimomys and the younger (Waverley Wood) with
Arvicola. The conclusion that Waverley Wood is younger than the
Cromerian stratotype at West Runton supports the biostratigraphic
age model27 and contradicts a conclusion reached in an earlier amino-
stratigraphical study2. Our data can provide age constraints for other
archaeological assemblages, enabling attribution to specificmarine iso-
tope stages in younger deposits. The development of Levallois techno-
logy, characterized by the removal of flakes from specifically prepared
cores, is unknown in Britain before MIS 9 (ref. 28). Archaeological
evidence from MIS 9 is sparse, but the far better record from sites
attributed to MIS 7 shows that Levallois industries had become dom-
inant in southern England; our data support this view (Figs 1 and 4).
In recent years it has become clear that humans were absent from

Britain during the Last Interglacial; earlier claims to the contrary have
been shown to be based on misinterpretation of archaeological sites
previously thought to be of Last Interglacial age (such as Aveley,
Crayford, Grays, Purfleet and Stutton), invariably now assigned to
earlier stages29 (Supplementary Data 1). Our results confirm that no
British archaeological site can be attributed to the Last Interglacial
(Fig. 4), a conclusion consistent with human absence during this
stage7,29.
This stratigraphical framework provides a secure basis for relating

the British terrestrial sequence to global Quaternary climate records.
This is fundamental to geological and archaeological research but, as
importantly, it enables the rich British record to be used to test the
ability of climate models to simulate pre-late Quaternary palaeocli-
mates. This dating technique offers a means of correlating terrestrial
withmarine and ice-core records, thereby increasing the confidence of
model predictions30. Moreover, the calcitic opercula of bithyniid (or
similar) gastropods occur commonly in many Quaternary sequences,
offering potential for development of regional aminostratigraphies
around the world.
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