
​
Naturalis Repository 

 

Macrophyte presence and growth form influence 
macroinvertebrate community structure 
 
Peter D. Walker, Sander Wijnhoven, Gerard van der Velde 
 

Downloaded from: 

https://doi.org/10.1016/j.aquabot.2012.09.003 

 

 

Article 25fa Dutch Copyright Act (DCA) - End User Rights​
This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) 

with consent from the author. Dutch law entitles the maker of a short scientific work funded either wholly 

or partially by Dutch public funds to make that work publicly available following a reasonable period after 

the work was first published, provided that reference is made to the source of the first publication of the 

work.​
 

This publication is distributed under the Naturalis Biodiversity Center ‘Taverne implementation’ 

programme. In this programme, research output of Naturalis researchers and collection managers that 

complies with the legal requirements of Article 25fa of the Dutch Copyright Act is distributed online and 

free of barriers in the Naturalis institutional repository. Research output is distributed six months after its 

first online publication in the original published version and with proper attribution to the source of the 

original publication.​
 

You are permitted to download and use the publication for personal purposes. All rights remain with the 

author(s) and copyrights owner(s) of this work. Any use of the publication other than authorized under 

this license or copyright law is prohibited.​
 

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, 

please let the department of Collection Information know, stating your reasons. In case of a legitimate 

complaint, Collection Information will make the material inaccessible. Please contact us through email: 

collectie.informatie@naturalis.nl. We will contact you as soon as possible. 

https://doi.org/10.1016/j.aquabot.2012.09.003
mailto:collectie.informatie@naturalis.nl


Macro
comm

Peter D
a Departmen
b Monitor Ta
c Naturalis B
d APEM Ltd.

a r t i c

Article histo
Received 4
Received in
Accepted 7
Available on

Keywords:
Macroinver
Macrophyte
Growth for
Communiti
Pond

1. Introd

The ph
ter habita
and Jack
streams a
eral com
Khalaf an
water bo
macroinv
the veget
growth fo
1988; Du
and Miku
Scheffer e

The im
systems
macroinv

∗ Corresp
Oxford Univ
Oxfordshire

E-mail a

0304-3770/
http://dx.do
Aquatic Botany 104 (2013) 80–87

Contents lists available at SciVerse ScienceDirect

Aquatic Botany

journa l homepage: www.e lsev ier .com/ locate /aquabot

phyte presence and growth form influence macroinvertebrate
unity structure

. Walkera,d,∗, Sander Wijnhovenb, Gerard van der Veldea,c

t of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
skforce, Royal Netherlands Institute for Sea Research, NIOZ-Yerseke, Yerseke, The Netherlands
iodiversity Center, Leiden, The Netherlands

, Centre for Innovation and Enterprise, Oxford University Begbroke Science Park, Oxfordshire, UK

l e i n f o

ry:
January 2012
revised form 5 September 2012
September 2012
line 3 October 2012

tebrates

a b s t r a c t

Multivariate analysis demonstrated that macroinvertebrate assemblages of macrophyte-dominated sub-
habitats within a small eutrophic pond differed markedly from those of Bottom substrate and Open water
habitats. Certain habitats (e.g. Nymphaea and Phragmites) appeared to be quite similar in their macroin-
vertebrate communities, whereas others appeared to be very distinct in terms of the species composition
(e.g. Open water habitat). Analysis of functional feeding groups also revealed differences between habi-
tats in terms of the community structure. Again, the Open water habitat exhibiting the most marked
difference. Macrophyte growth form does not cause significant differences in macroinvertebrate species
s
m
es

richness and diversity but it has a significant effect on macroinvertebrate abundance. Habitats consisting
of highly branched and dissected macrophyte growth forms provide more food resources and microhab-
itats supporting larger numbers of macroinvertebrates than macrophytes with firm undissected stalks
and leaves. This study highlights the importance of maintaining the ecological quality of small freshwa-
ter habitats in order to promote macrophyte growth and thus maintain a high level of species richness
within such ecosystems.
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ysical structure and architectural complexity of freshwa-
ts determine the community that resides there (Rennie

son, 2005). Macroinvertebrate distribution patterns in
re typically dependent upon the particle size of the min-
ponent of the substrate (e.g. Tolkamp and Both, 1978;
d Tachet, 1980; Sheldon and Haick, 1981). Within still

dies (e.g. lakes and ponds) it has been demonstrated that
ertebrate distribution, is predominantly determined by
ation type, and more importantly, by the architecture or
rm of the dominant macrophytes (e.g. Cyr and Downing,
ggan et al., 2001; Dvořak and Best, 1982; Karassowska
lski, 1960; Korinkova, 1971; Rennie and Jackson, 2005;
t al., 1984; Taniguchi et al., 2003).
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2004). Both macroinvertebrate diversity and abundance
with increasing vegetation biomass and/or density (Warfe
uta, 2004; and references therein). Macrophytes fill the

lumn in a characteristic way providing extensive sub-
periphyton, macroinvertebrates and developing eggs, as

helter against predation by larger animals such as fish.
ore, macrophytes influence the under water climate and

y via their uptake and release of chemical substances (e.g.
, allelopathic substances) and influence bottom life via the
acrophyte derived detritus (Van der Valk, 2006). Macro-

erefore structure lentic communities (Den Hartog and van
, 1988; Jeppesen et al., 1998). Macrophyte growth form,
bstrate and biomass with a particular architecture and

l complexity, has been referred as a driving factor behind
ertebrate community composition (Den Hartog and van
, 1988; Jeffries, 1993; Van der Velde, 1980).

s study the macroinvertebrate communities of several
tats, represented by various macrophyte growth forms,
single pond are described. Studying the influence of var-
th forms of macrophytes within a single pond has the
e that water chemistry and physical conditions are simi-
the various types of sub-habitat and show comparable

ns, whilst macroinvertebrates represent one species pool
easily select where to reside. Seasonal variation should
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be taken into consideration but can be ruled out here
all samples were obtained during the same period. In
the direct influence of growth form on macroinverte-
munities can be studied without large variation in other

paper the macroinvertebrate species richness, diversity
dance are described from seven different sub-habitats
rent macrophyte growth forms, bare bottom substrate
water) within a freshwater pond. This study thus pro-

ful information pertaining to the ecological importance of
ytes in small freshwater systems.

ials and methods

y area

nvestigation was conducted in a small, eutrophic, still
nd in Fleetwood, NW England (Ordnance Survey Grid
: SD318449) (open water surface area approximately

with an average depth of <100 cm and a maximum depth
. The bottom substrate is clay overlain with coarse gravel
rganic silt.
chment of vegetation is clearly evident from a large reed

isting predominantly of Phragmites australis interspersed
ha latifolia and Iris pseudacorus at the southern end of
which is approximately the same size as the open pond
ost the entire littoral zone is vegetated with five macro-
cies belonging to different growth forms predominating

collections

dard pond-net (230 mm × 255 mm frame with 900 �m
s used to collect 10 replicate macroinvertebrate samples

h of the seven main habitat types identified within the
e was taken to avoid repeat sampling of the same area.
ple was obtained using 1 m sweeps with the net being
t the end of each sweep to prevent escape or contami-
the sample as the net was removed from the sampling

is ensured that a standard volume of approximately 50 L
led each time. Samples taken from the bottom substrate

ained by pushing the net rim approximately 2 cm into
rate and then carrying out a 1 m sweep. For macrophyte
samples were obtained from stands representing several
rms as close to monospecific as possible. Care was taken
that each net sweep was performed only in that specific

e. when sampling weed beds care was taken not to touch,
b, the bottom sediment to avoid sampling invertebrate
ns residing there. Similarly care was taken not to sam-
water habitats above or surrounding weed beds to avoid
invertebrates in that region. All sampling was conducted
1 week period during July to avoid any potential differ-
ociated with season. Whilst this study therefore pertains
imited time, this month is associated with high productiv-
th macrophytes and macroinvertebrates thus main lines
to be observed.
es were immediately rinsed into 1 L plastic containers
-ionised water and the net was thoroughly examined
nvertebrates still clinging to the net. Any macroinver-
found were gently removed using forceps or de-ionised
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stical methods

r-Parker Dominance Index (BPDI) was used as a simple
of species diversity and is calculated as:

= Number of individuals of the most abundant species/

Total number of Individuals of the sample

cores closer to 0 indicate higher species diversity.
for macroinvertebrate abundance, species richness and
iversity for each habitat were tested for significant differ-
ween habitats using a Kruskal–Wallis ANOVA followed by
ultiple comparisons post hoc test. Spearmans rank corre-
efficients were performed to test for linear relationships
these variables.

ivariate analyses

onical Correspondence Analysis (CCA), which is a direct
analysis, was performed on the log-transformed species
g the CANOCO for Windows software package (version

Braak and Smilauer, 1998). A Detrended Correspondence
(DCA) showed that the data had a long gradient length
ll data; 2.2 when open water data were excluded); there-
imodal ordination method was used. A CCA is a direct
hich means that in this case the species compositions can

y explained by the environmental characteristics (habitat

pare (dis)similarity of the communities between habitat
-metric multi-dimensional scaling (nMDS) in combina-
analyses of similarity (ANOSIM) were executed in Primer
ore analyses, all data were fourth-root transformed to
the effect of dominant species, and similarity analyses
on the Bray–Curtis formula (Clarke and Gorley, 2001).

S 2D representation was considered acceptable when
s factor did not transgress 0.2. With ANOSIM, pair-wise
ons of differences between habitat-types in the macro-

munities were tested for taking a Bonferroni correction
iple testing of the same kind, according to P ≤ 0.05/N
ber of tests of the same kind) into account. One sample
‘Open water’ was excluded from the analyses as it con-
macrofauna.

ts

th forms

key habitat types were identified (Table 1). These habi-
e further grouped into open water, bare bottom substrate,
t helophyte (P. australis), nymphaeid (Nymphaea alba) and
allitriche sp.) both possessing floating leaves, and fully
ed elodeid (Elodea canadensis) and ceratophyllid (Cerato-
emersum) macrophytes.

ifferent habitat types represent a diverse range of habi-
ring markedly in terms of their structural complexity. The
er habitat is structurally non-complex due to the lack of
n or other three-dimensional components. The emergent
tes) and floating leaved (Nymphaea) habitats exhibit some
l complexity with plant stalks running upwards through
r column to the waters surface. The three submerged
artially or completely) habitat types containing macro-

lodea, Ceratophyllum and Callitriche) are all complex in
their structural architecture due to the highly branched
cted growth forms they exhibit. The non-vegetated bot-
tom substrate) habitat is unique in that it is complex in
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Table 1
Description of the seven habitat types sampled in Rossall pond including depth range at which the habitat types were found and/or sampled. Growth forms of macrophytes
according to the classification by Den Hartog and van der Velde (1988).

Habitat Description Complexity Depth range (cm) sampled

Open water Open water with no macrophytes present. Highly simple 50–120
Bottom substrate Bottom sediment consisting mainly of fine gravel and silt.

No macrophytes present.
Complex 30–100

Elodeid Predominantly Elodea canadensis. Submerged rhizophyte
with upright shoots and with small but broad oval leaves
typically in whorls of 4 at each node.
No floating leaves.

Moderately complex 40–100

Ceratophyllid Predominantly Ceratophyllum demersum. Submerged
rhizophyte or pleustophyte with whorls of 5–12 leaves at
each node. Leaves typically forked once or twice. No
floating leaves.

Highly complex 40–100

Peplid Predominantly Callitriche sp. Caulescent rhizophyte with
branched structure with elliptical floating leaves in a
rosette and linear submerged leaves.

Moderately complex 40–60

Nymphaeid Predominantly Nymphaea alba. Large floating
shield-shaped leaves attached to long simple submerged
stalks.

Simple 70–120

Helophyte Predominantly Phragmites australis although frequently
interspersed with individuals of Typha latifolia and Iris
pseudacorus. Plants rooting in the bottom, with basal parts
continuously submerged running vertically through the

Simple 30–50
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l 39 different taxa were identified from 2707 individuals
from seven different sub-habitats. The most abundant
all were the water hog louse, Asellus aquaticus and the
tworm, Dugesia lugubris, with 773 and 887 individuals

ely, from 70 samples. Damselfly larvae (Zygoptera; Enal-
athigerum and Ischnura elegans) were also common in
ce and were the second and third most abundant preda-
ies (D. lugubris being the most abundant). Table 2 shows
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of samples taken (Fig. 1). However, in all cases, except
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six samples had been analysed (Fig. 1). With regard
tal species richness observed, the habitats displayed

wing order: Bottom substrate ≥ Phragmites > Nymphaea
he ≥ Elodea > Ceratophyllum > Open water. The Phragmites
m substrate habitats were the most species rich, each
match the species richness of the aggregated samples
whole pond) by >60%. Both of these sites also con-
e highest number of species unique to those habitats
ch, Table 3). The Open water habitat was the poorest
of species richness with only nine different taxa being

.
all–Wallis test demonstrated significant differences
s richness between the different habitats (P < 0.0001;
Dunn’s multiple comparison test revealed that vales

open water habitat differed significantly from those
m substrate, Nymphaea, Callitriche and Elodea habi-
h regard to the mean number of species observed,

tats displayed the following, decreasing order: Bottom
> Callitriche > Elodea > Nymphaea, Ceratophyllum, Phrag-
en water. Differences were also shown between habitats

es diversity (Kruskal–Wallis test – P = 0.001; Table 3)
n’s multiple comparison test demonstrating that these

es were only statistically significant between Nymphaea
a habitats.
tal number of invertebrates collected from each habi-

showed a large range from just 19 individuals collected
n water samples to 789 individuals collected from Cal-
amples. The total number of invertebrates collected
decreasing order from Ceratophyllum > Elodea > Bottom
> Callitriche > Phragmites > Nymphaea > Open water. Signif-
fferences in the mean invertebrate abundance per

ere observed between habitats (Kruskal–Wallis test
001; Table 3) with Dunn’s multiple comparison test
rating that values for Open water habitat were sig-

different from all other habitats apart from Phrag-
d Nymphaea habitats. Significant differences were also
between Bottom substrate and Nymphaea; Phragmites
a; Phragmites and Ceratophyllum; Nymphaea and Elodea;
phaea and Ceratophyllum. With regard to the mean
of individuals observed, the habitats displayed the
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Table 2
Full species list including number of individuals sampled for each of the seven habitats in Rossall pond and functional feeding groups: D – detritivores; SGS – shredders,
grazers and scrapers; F – filtrators; PrC – predatory carnivores; PaC – parasitic carnivores.

Habitat Taxa Feeding group Phragmites australis Nymphaea alba Callitriche sp. Ceratophylum demersum Elodea canadensis Substrate Open water

Insecta
Diptera

Chironomidae D 2 14 10 21 10 32
Ceratopogonidae D 1
Pedicia sp. D 1
Dixa sp. F 1 1
Eristalis sp. D 2 7 5 2

Odonata
Ischnura elegans PrC 29 14 29 61 29 45
Enallagma cyathigerum PrC 12 31 23 3 15 10 1
Aeshna grandis PrC 8

Coleoptera
Hygrotus inaequalis PrC 3
Hyphydrus ovatus PrC 4 2
Dryops sp. PrC 1

Heteroptera
Notonecta sp. PrC 3 2 1 2
Corixa punctata D 37 4 19 9 13 67 2

Ephemeroptera
Cloeon dipterum SGS 1 3

Trichoptera
Arthripsodes aterrimus SGS 2

Lepidoptera
Elophila nymphaeata SGS 3

Megaloptera
Sialis lutaria PrC 1 1 64

Crustacea
Eurycercus lamellatus F 16 9 11 5 11 1
Simocephalus vetulus F 2 2 2
Asellus aquaticus SGS 12 5 111 276 204 163 1
Argulus foliaceus PaC 1 2 2 8
Cypris sp. F 1 11 14
Crangonyx pseudogracilis SGS 2 4 8 7 1

Mollusca
Bivalvia

Musculium lacustre F 2
Sphaerium corneum F 61
Pisidium sp. F 1 1 1

Gastropoda
Physa fontinalis SGS 5 10 1 7 2
Segmentina complanata SGS 9 5 5 8 3
Radix peregra/ovata SGS 6 3 1 1
Planorbis carinatus SGS 7 10 7 4
Planorbarius corneus SGS 24 5
Radix auricularia SGS 8 5

Hirudinea
Helobdella stagnalis PrC 1 2
Hemiclepsis marginata PaC 7
Glossiphonia complanata PrC 3 4

Turbellaria
Dugesia lugubris PrC 8 16 71 357 425 9 1

Oligochaeta
Tubifex sp. D 5

Arachnidae
Argyr
Hydr
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, decreasing order: Ceratophyllum > Elodea > Bottom sub-
llitriche > Phragmites > Nymphaea > Open water.
abitats supporting the greatest number of macroin-
es were the Ceratophyllum and Elodea habitats. The

abundance of these two habitats made up 56.9% of
dance from the aggregated samples. In both cases, one
. lugubris) constituted approximately half of the habi-
all abundance. This indicates low evenness and this
ed by their relatively poor scores for species diver-
e 3). The Phragmites habitat had the BPDI score closest
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nific
com

3.3.

F
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therefore exhibited the highest species diversity out
even habitats sampled (Table 3). BPDI score was in
g order Open water > Elodea > Ceratophyllum > Callitriche,
s > Bottom substrate > Nymphaea. Differences between

found m
habitats;
the other
similar n
10 10 5

ith regard to species diversity were only found to be sig-
etween Nymphaea and Elodea habitats (Dunn’s multiple
on test: P < 0.05).

ivariate analyses

e Canonical Correspondence Analysis with all data
the Open water habitat appeared to be completely differ-
the other habitats in terms of macroinvertebrate species
see insert, Fig. 2). Argulus foliaceus (no. 21 in Fig. 2) was

ore frequently in Open water than in any of the other
Dryops sp. (no. 11 in Fig. 2) was observed only once. All
taxa were observed in at least two habitats and/or in

umbers. When the Open water data were excluded, the
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Table 3
Macroinvertebrate species richness, abundance and BPDI (species diversity) values for the seven different habitats. Also shown is the proportion of the total pond species
richness found in each of the habitats (% of total richness). % of total abundance = the proportion of the total number of macroinvertebrates sampled that were obtained from
each habitat. The most abundant species for each habitat type are also given. Numbers in parentheses = 1 standard error.

Phragmites Nymphaea Callitriche Ceratophyllum Elodea Substrate Open water

Richness 25 20 18 14 17 26 9
% of total richness 61 48.8 44 34.1 41.5 63.4 22
Number of unique taxa 3 1 1 1 0 3 1
Mean richness per

sample (n = 10)
7 (2) 7.1 (2.2) 9 (2.3) 7.1 (1.7) 8.2 (1.8) 11.5 (3.3) 1.6 (1.2)

Abundance 167 127 326 789 753 530 19
% of total abundance 6.2 4.7 12 29.1 27.8 19.6 0.7
Most abundant taxa Corixa punctata Enallagma cyathigerum Asellus aquaticus Dugesia lugubris Dugesia lugubris Asellus aquaticus Argulus foliaceus
Mean abundance per

sample (n = 10)
16.7 (6.2) 32.6 (15.8) 78.9 (39.0) 12.7 (4.2) 53 (22.9) 1.9 (1.4) 75.3 (24.8)

Species d 0.45
Mean div

sample
0.51 (
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Eigenvalu
tively. Th
and 0.901

Fig. 2. CCA
(6); Enallag
(14); Arthri
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(35); Duges
iversity 0.22 0.24 0.34
ersity per
(n = 10)

0.38 (0.12) 0.34 (0.13) 0.4 (0.14)
on of the taxa in the other habitats is more distinct (Fig. 2).
es for axes 1–4 are 0.295, 0.221, 0.160 and 0.101, respec-

e species – environment correlations are high, being 0.956
for the axes 1 and 2, respectively. The first ordination

axis mig
tion to de
to the th
in the w

analysis without (a) and with (b) Open water habitat data. Chironomidae (1); Ceratopog
ma cyathigerum (7); Aeshna grandis (8); Hygrotus inaequalis (9); Hyphydrus ovatus (10); D
psodes aterrimus (15); Elophila nymphaeata (16); Sialis lutaria (17); Eurycercus lamellatus
sp. (22); Crangonyx pseudogracilis (23); Musculium lacustre (24); Sphaerium corneum (25

ra (29); Planorbis carinatus (30); Planorbarius corneus (31); Radix auricularia (32); Helobd
ia lugubris (36); Tubifex sp. (37); Argyroneta aquatica (38); Hydracarina (39). Insert = CCA
0.56 0.31 0.42
0.09) 0.36 (0.18) 0.67 (0.37) 0.56 (0.11)
ht be interpreted as the gradient from without vegeta-
nse vegetation whereas the second axis might be related
ree-dimensional complexity of the vegetation structure
ater column. Therefore the Nymphaea and Phragmites

onidae (2); Pedicia sp. (3); Dixa sp. (4); Eristalis sp. (5); Ischnura elegans
ryops sp. (11); Notonecta sp. (12); Corixa puntata (13); Cloeon dipterum

(18); Simocephalus vetulus (19); Asellus aquaticus (20); Argulus foliaceus
); Pisidium sp. (26); Physa fontinalis (27); Segmentina complanata (28);
ella stagnalis (33); Hemiclepsis marginata (34); Glossiphonia complanata
analysis with Open water data included.
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Table 4
Analyses of similarity (ANOSIM) test results (corresponding to the nMDS plot of Fig. 3) indicating significant differences between communities of the different habitat types.
R-values for pair-wise comparisons varying between 0 and 1, indicating the degree of separation (from R = 0; communities completely overlap, to R = 1; communities are
completely separated) are shown when differences are significant (˛ = 0.0024 after Bonferroni correction; ns = not significant).

Phragmites Nymphaea Callitriche Ceratophyllum Elodea Substrate Open water

Phragmites Overall comparison of communities: P = 0.001, R = 0.517
Nymphaea 0.410
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